Signed Binary to Integer: Number 1101 1111 0111 1110 1101 1101 0010 0011 1000 0000 0000 1001 0000 0101 1011 0000 Converted and Written as a Base Ten Integer, in Decimal System

Signed binary number 1101 1111 0111 1110 1101 1101 0010 0011 1000 0000 0000 1001 0000 0101 1011 0000(2) written as a base ten integer, in decimal system

1. Is this a positive or a negative number?

1101 1111 0111 1110 1101 1101 0010 0011 1000 0000 0000 1001 0000 0101 1011 0000 is the binary representation of a negative integer, on 64 bits (8 Bytes).


In a signed binary, the first bit (the leftmost) is reserved for the sign,

1 = negative, 0 = positive. This bit does not count when calculating the absolute value.


2. Construct the unsigned binary number.

Exclude the first bit (the leftmost), that is reserved for the sign:


1101 1111 0111 1110 1101 1101 0010 0011 1000 0000 0000 1001 0000 0101 1011 0000 = 101 1111 0111 1110 1101 1101 0010 0011 1000 0000 0000 1001 0000 0101 1011 0000


3. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent:

  • 262

    1
  • 261

    0
  • 260

    1
  • 259

    1
  • 258

    1
  • 257

    1
  • 256

    1
  • 255

    0
  • 254

    1
  • 253

    1
  • 252

    1
  • 251

    1
  • 250

    1
  • 249

    1
  • 248

    0
  • 247

    1
  • 246

    1
  • 245

    0
  • 244

    1
  • 243

    1
  • 242

    1
  • 241

    0
  • 240

    1
  • 239

    0
  • 238

    0
  • 237

    1
  • 236

    0
  • 235

    0
  • 234

    0
  • 233

    1
  • 232

    1
  • 231

    1
  • 230

    0
  • 229

    0
  • 228

    0
  • 227

    0
  • 226

    0
  • 225

    0
  • 224

    0
  • 223

    0
  • 222

    0
  • 221

    0
  • 220

    0
  • 219

    1
  • 218

    0
  • 217

    0
  • 216

    1
  • 215

    0
  • 214

    0
  • 213

    0
  • 212

    0
  • 211

    0
  • 210

    1
  • 29

    0
  • 28

    1
  • 27

    1
  • 26

    0
  • 25

    1
  • 24

    1
  • 23

    0
  • 22

    0
  • 21

    0
  • 20

    0

4. Multiply each bit by its corresponding power of 2 and add all the terms up.

101 1111 0111 1110 1101 1101 0010 0011 1000 0000 0000 1001 0000 0101 1011 0000(2) =


(1 × 262 + 0 × 261 + 1 × 260 + 1 × 259 + 1 × 258 + 1 × 257 + 1 × 256 + 0 × 255 + 1 × 254 + 1 × 253 + 1 × 252 + 1 × 251 + 1 × 250 + 1 × 249 + 0 × 248 + 1 × 247 + 1 × 246 + 0 × 245 + 1 × 244 + 1 × 243 + 1 × 242 + 0 × 241 + 1 × 240 + 0 × 239 + 0 × 238 + 1 × 237 + 0 × 236 + 0 × 235 + 0 × 234 + 1 × 233 + 1 × 232 + 1 × 231 + 0 × 230 + 0 × 229 + 0 × 228 + 0 × 227 + 0 × 226 + 0 × 225 + 0 × 224 + 0 × 223 + 0 × 222 + 0 × 221 + 0 × 220 + 1 × 219 + 0 × 218 + 0 × 217 + 1 × 216 + 0 × 215 + 0 × 214 + 0 × 213 + 0 × 212 + 0 × 211 + 1 × 210 + 0 × 29 + 1 × 28 + 1 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 0 × 20)(10) =


(4 611 686 018 427 387 904 + 0 + 1 152 921 504 606 846 976 + 576 460 752 303 423 488 + 288 230 376 151 711 744 + 144 115 188 075 855 872 + 72 057 594 037 927 936 + 0 + 18 014 398 509 481 984 + 9 007 199 254 740 992 + 4 503 599 627 370 496 + 2 251 799 813 685 248 + 1 125 899 906 842 624 + 562 949 953 421 312 + 0 + 140 737 488 355 328 + 70 368 744 177 664 + 0 + 17 592 186 044 416 + 8 796 093 022 208 + 4 398 046 511 104 + 0 + 1 099 511 627 776 + 0 + 0 + 137 438 953 472 + 0 + 0 + 0 + 8 589 934 592 + 4 294 967 296 + 2 147 483 648 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 524 288 + 0 + 0 + 65 536 + 0 + 0 + 0 + 0 + 0 + 1 024 + 0 + 256 + 128 + 0 + 32 + 16 + 0 + 0 + 0 + 0)(10) =


(4 611 686 018 427 387 904 + 1 152 921 504 606 846 976 + 576 460 752 303 423 488 + 288 230 376 151 711 744 + 144 115 188 075 855 872 + 72 057 594 037 927 936 + 18 014 398 509 481 984 + 9 007 199 254 740 992 + 4 503 599 627 370 496 + 2 251 799 813 685 248 + 1 125 899 906 842 624 + 562 949 953 421 312 + 140 737 488 355 328 + 70 368 744 177 664 + 17 592 186 044 416 + 8 796 093 022 208 + 4 398 046 511 104 + 1 099 511 627 776 + 137 438 953 472 + 8 589 934 592 + 4 294 967 296 + 2 147 483 648 + 524 288 + 65 536 + 1 024 + 256 + 128 + 32 + 16)(10) =


6 881 180 425 210 365 360(10)

5. If needed, adjust the sign of the integer number by the first digit (leftmost) of the signed binary:

1101 1111 0111 1110 1101 1101 0010 0011 1000 0000 0000 1001 0000 0101 1011 0000(2) = -6 881 180 425 210 365 360(10)

The number 1101 1111 0111 1110 1101 1101 0010 0011 1000 0000 0000 1001 0000 0101 1011 0000(2) converted from a signed binary (base two) and written as an integer in decimal system (base ten):
1101 1111 0111 1110 1101 1101 0010 0011 1000 0000 0000 1001 0000 0101 1011 0000(2) = -6 881 180 425 210 365 360(10)

Spaces were used to group digits: for binary, by 4, for decimal, by 3.

How to convert signed binary numbers from binary system to decimal (base ten)

To understand how to convert a signed binary number from binary system to decimal (base ten), the easiest way is to do it through an example - convert the binary number, 1001 1110, to base ten:

  • In a signed binary, the first bit (leftmost) is reserved for the sign, 1 = negative, 0 = positive. This bit does not count when calculating the absolute value (value without sign). The first bit is 1, so our number is negative.
  • Write bellow the binary number in base two, and above each bit that makes up the binary number write the corresponding power of 2 (numeral base) that its place value represents, starting with zero, from the right of the number (rightmost bit), walking to the left of the number and increasing each corresonding power of 2 by exactly one unit, but ignoring the very first bit (the leftmost, the one representing the sign):
  • powers of 2:   6 5 4 3 2 1 0
    digits: 1 0 0 1 1 1 1 0
  • Build the representation of the positive number in base 10, by taking each digit of the binary number, multiplying it by the corresponding power of 2 and then adding all the terms up, but also taking care of the number sign:

    1001 1110 =


    - (0 × 26 + 0 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 0 × 20)(10) =


    - (0 + 0 + 16 + 8 + 4 + 2 + 0)(10) =


    - (16 + 8 + 4 + 2)(10) =


    -30(10)

  • Binary signed number, 1001 1110 = -30(10), signed negative integer in base 10