Signed binary number 1100 1100 1101 0010 1011 0100 1010 0110 converted to an integer in base ten

Signed binary 1100 1100 1101 0010 1011 0100 1010 0110(2) to an integer in decimal system (in base 10) = ?

1. Is this a positive or a negative number?


In a signed binary, first bit (the leftmost) is reserved for the sign, 1 = negative, 0 = positive. This bit does not count when calculating the absolute value.

1100 1100 1101 0010 1011 0100 1010 0110 is the binary representation of a negative integer, on 32 bits (4 Bytes).


2. Construct the unsigned binary number, exclude the first bit (the leftmost), that is reserved for the sign:

1100 1100 1101 0010 1011 0100 1010 0110 = 100 1100 1101 0010 1011 0100 1010 0110

3. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent:

    • 230

      1
    • 229

      0
    • 228

      0
    • 227

      1
    • 226

      1
    • 225

      0
    • 224

      0
    • 223

      1
    • 222

      1
    • 221

      0
    • 220

      1
    • 219

      0
    • 218

      0
    • 217

      1
    • 216

      0
    • 215

      1
    • 214

      0
    • 213

      1
    • 212

      1
    • 211

      0
    • 210

      1
    • 29

      0
    • 28

      0
    • 27

      1
    • 26

      0
    • 25

      1
    • 24

      0
    • 23

      0
    • 22

      1
    • 21

      1
    • 20

      0

4. Multiply each bit by its corresponding power of 2 and add all the terms up:

100 1100 1101 0010 1011 0100 1010 0110(2) =


(1 × 230 + 0 × 229 + 0 × 228 + 1 × 227 + 1 × 226 + 0 × 225 + 0 × 224 + 1 × 223 + 1 × 222 + 0 × 221 + 1 × 220 + 0 × 219 + 0 × 218 + 1 × 217 + 0 × 216 + 1 × 215 + 0 × 214 + 1 × 213 + 1 × 212 + 0 × 211 + 1 × 210 + 0 × 29 + 0 × 28 + 1 × 27 + 0 × 26 + 1 × 25 + 0 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 0 × 20)(10) =


(1 073 741 824 + 0 + 0 + 134 217 728 + 67 108 864 + 0 + 0 + 8 388 608 + 4 194 304 + 0 + 1 048 576 + 0 + 0 + 131 072 + 0 + 32 768 + 0 + 8 192 + 4 096 + 0 + 1 024 + 0 + 0 + 128 + 0 + 32 + 0 + 0 + 4 + 2 + 0)(10) =


(1 073 741 824 + 134 217 728 + 67 108 864 + 8 388 608 + 4 194 304 + 1 048 576 + 131 072 + 32 768 + 8 192 + 4 096 + 1 024 + 128 + 32 + 4 + 2)(10) =


1 288 877 222(10)

5. If needed, adjust the sign of the integer number by the first digit (leftmost) of the signed binary:

1100 1100 1101 0010 1011 0100 1010 0110(2) = -1 288 877 222(10)

Number 1100 1100 1101 0010 1011 0100 1010 0110(2) converted from signed binary to an integer in decimal system (in base 10):
1100 1100 1101 0010 1011 0100 1010 0110(2) = -1 288 877 222(10)

Spaces used to group digits: for binary, by 4; for decimal, by 3.


More operations of this kind:

1100 1100 1101 0010 1011 0100 1010 0101 = ?

1100 1100 1101 0010 1011 0100 1010 0111 = ?


Convert signed binary numbers to integers in decimal system (base 10)

First bit (the leftmost) is reserved for the sign, 1 = negative, 0 = positive. This bit does not count when calculating the absolute value.

Entered binary number length must be: 2, 4, 8, 16, 32, or 64 - otherwise extra bits on 0 will be added in front (to the left).

How to convert a signed binary number to an integer in base ten:

1) Construct the unsigned binary number: exclude the first bit (the leftmost); this bit is reserved for the sign, 1 = negative, 0 = positive and does not count when calculating the absolute value (without sign).

2) Multiply each bit of the binary number by its corresponding power of 2 that its place value represents.

3) Add all the terms up to get the positive integer number in base ten.

4) Adjust the sign of the integer number by the first bit of the initial binary number.

Latest signed binary numbers converted to signed integers in decimal system (base ten)

1100 1100 1101 0010 1011 0100 1010 0110 = -1,288,877,222 Mar 02 13:37 UTC (GMT)
1001 0101 1110 0100 = -5,604 Mar 02 13:37 UTC (GMT)
1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 1111 1111 1011 = -8,187 Mar 02 13:36 UTC (GMT)
0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0110 = 549,755,813,894 Mar 02 13:36 UTC (GMT)
1100 0100 1001 0000 = -17,552 Mar 02 13:36 UTC (GMT)
1010 0010 1011 1011 0010 1010 0101 0101 0100 0111 1001 0101 0101 0111 0011 1101 = -2,502,640,563,695,998,781 Mar 02 13:36 UTC (GMT)
0011 1010 1011 0111 1110 1101 1010 0000 0111 1101 0011 0110 0111 1111 1111 1100 = 4,231,111,648,489,144,316 Mar 02 13:35 UTC (GMT)
1010 0110 0101 1001 = -9,817 Mar 02 13:35 UTC (GMT)
0000 0011 0000 1010 = 778 Mar 02 13:35 UTC (GMT)
0101 1111 0101 0010 = 24,402 Mar 02 13:35 UTC (GMT)
0100 0001 1011 0001 1100 0111 0001 1111 = 1,102,169,887 Mar 02 13:34 UTC (GMT)
0000 0000 0000 0000 1100 0011 0111 0101 = 50,037 Mar 02 13:34 UTC (GMT)
1010 0110 0100 1011 = -9,803 Mar 02 13:34 UTC (GMT)
All the converted signed binary numbers to integers in base ten

How to convert signed binary numbers from binary system to decimal (base ten)

To understand how to convert a signed binary number from binary system to decimal (base ten), the easiest way is to do it through an example - convert the binary number, 1001 1110, to base ten:

  • In a signed binary, the first bit (leftmost) is reserved for the sign, 1 = negative, 0 = positive. This bit does not count when calculating the absolute value (value without sign). The first bit is 1, so our number is negative.
  • Write bellow the binary number in base two, and above each bit that makes up the binary number write the corresponding power of 2 (numeral base) that its place value represents, starting with zero, from the right of the number (rightmost bit), walking to the left of the number and increasing each corresonding power of 2 by exactly one unit, but ignoring the very first bit (the leftmost, the one representing the sign):
  • powers of 2:   6 5 4 3 2 1 0
    digits: 1 0 0 1 1 1 1 0
  • Build the representation of the positive number in base 10, by taking each digit of the binary number, multiplying it by the corresponding power of 2 and then adding all the terms up, but also taking care of the number sign:

    1001 1110 =


    - (0 × 26 + 0 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 0 × 20)(10) =


    - (0 + 0 + 16 + 8 + 4 + 2 + 0)(10) =


    - (16 + 8 + 4 + 2)(10) =


    -30(10)

  • Binary signed number, 1001 1110 = -30(10), signed negative integer in base 10