Signed Binary to Integer: Number 0101 1001 1001 1000 0100 1001 0001 0010 1011 0000 0111 0100 1101 0110 0111 0111 Converted and Written as a Base Ten Integer, in Decimal System

Signed binary number 0101 1001 1001 1000 0100 1001 0001 0010 1011 0000 0111 0100 1101 0110 0111 0111(2) written as a base ten integer, in decimal system

1. Is this a positive or a negative number?

0101 1001 1001 1000 0100 1001 0001 0010 1011 0000 0111 0100 1101 0110 0111 0111 is the binary representation of a positive integer, on 64 bits (8 Bytes).


In a signed binary, the first bit (the leftmost) is reserved for the sign,

1 = negative, 0 = positive. This bit does not count when calculating the absolute value.


2. Construct the unsigned binary number.

Exclude the first bit (the leftmost), that is reserved for the sign:


0101 1001 1001 1000 0100 1001 0001 0010 1011 0000 0111 0100 1101 0110 0111 0111 = 101 1001 1001 1000 0100 1001 0001 0010 1011 0000 0111 0100 1101 0110 0111 0111


3. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent:

  • 262

    1
  • 261

    0
  • 260

    1
  • 259

    1
  • 258

    0
  • 257

    0
  • 256

    1
  • 255

    1
  • 254

    0
  • 253

    0
  • 252

    1
  • 251

    1
  • 250

    0
  • 249

    0
  • 248

    0
  • 247

    0
  • 246

    1
  • 245

    0
  • 244

    0
  • 243

    1
  • 242

    0
  • 241

    0
  • 240

    1
  • 239

    0
  • 238

    0
  • 237

    0
  • 236

    1
  • 235

    0
  • 234

    0
  • 233

    1
  • 232

    0
  • 231

    1
  • 230

    0
  • 229

    1
  • 228

    1
  • 227

    0
  • 226

    0
  • 225

    0
  • 224

    0
  • 223

    0
  • 222

    1
  • 221

    1
  • 220

    1
  • 219

    0
  • 218

    1
  • 217

    0
  • 216

    0
  • 215

    1
  • 214

    1
  • 213

    0
  • 212

    1
  • 211

    0
  • 210

    1
  • 29

    1
  • 28

    0
  • 27

    0
  • 26

    1
  • 25

    1
  • 24

    1
  • 23

    0
  • 22

    1
  • 21

    1
  • 20

    1

4. Multiply each bit by its corresponding power of 2 and add all the terms up.

101 1001 1001 1000 0100 1001 0001 0010 1011 0000 0111 0100 1101 0110 0111 0111(2) =


(1 × 262 + 0 × 261 + 1 × 260 + 1 × 259 + 0 × 258 + 0 × 257 + 1 × 256 + 1 × 255 + 0 × 254 + 0 × 253 + 1 × 252 + 1 × 251 + 0 × 250 + 0 × 249 + 0 × 248 + 0 × 247 + 1 × 246 + 0 × 245 + 0 × 244 + 1 × 243 + 0 × 242 + 0 × 241 + 1 × 240 + 0 × 239 + 0 × 238 + 0 × 237 + 1 × 236 + 0 × 235 + 0 × 234 + 1 × 233 + 0 × 232 + 1 × 231 + 0 × 230 + 1 × 229 + 1 × 228 + 0 × 227 + 0 × 226 + 0 × 225 + 0 × 224 + 0 × 223 + 1 × 222 + 1 × 221 + 1 × 220 + 0 × 219 + 1 × 218 + 0 × 217 + 0 × 216 + 1 × 215 + 1 × 214 + 0 × 213 + 1 × 212 + 0 × 211 + 1 × 210 + 1 × 29 + 0 × 28 + 0 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 1 × 20)(10) =


(4 611 686 018 427 387 904 + 0 + 1 152 921 504 606 846 976 + 576 460 752 303 423 488 + 0 + 0 + 72 057 594 037 927 936 + 36 028 797 018 963 968 + 0 + 0 + 4 503 599 627 370 496 + 2 251 799 813 685 248 + 0 + 0 + 0 + 0 + 70 368 744 177 664 + 0 + 0 + 8 796 093 022 208 + 0 + 0 + 1 099 511 627 776 + 0 + 0 + 0 + 68 719 476 736 + 0 + 0 + 8 589 934 592 + 0 + 2 147 483 648 + 0 + 536 870 912 + 268 435 456 + 0 + 0 + 0 + 0 + 0 + 4 194 304 + 2 097 152 + 1 048 576 + 0 + 262 144 + 0 + 0 + 32 768 + 16 384 + 0 + 4 096 + 0 + 1 024 + 512 + 0 + 0 + 64 + 32 + 16 + 0 + 4 + 2 + 1)(10) =


(4 611 686 018 427 387 904 + 1 152 921 504 606 846 976 + 576 460 752 303 423 488 + 72 057 594 037 927 936 + 36 028 797 018 963 968 + 4 503 599 627 370 496 + 2 251 799 813 685 248 + 70 368 744 177 664 + 8 796 093 022 208 + 1 099 511 627 776 + 68 719 476 736 + 8 589 934 592 + 2 147 483 648 + 536 870 912 + 268 435 456 + 4 194 304 + 2 097 152 + 1 048 576 + 262 144 + 32 768 + 16 384 + 4 096 + 1 024 + 512 + 64 + 32 + 16 + 4 + 2 + 1)(10) =


6 455 990 410 454 292 087(10)

5. If needed, adjust the sign of the integer number by the first digit (leftmost) of the signed binary:

0101 1001 1001 1000 0100 1001 0001 0010 1011 0000 0111 0100 1101 0110 0111 0111(2) = 6 455 990 410 454 292 087(10)

The number 0101 1001 1001 1000 0100 1001 0001 0010 1011 0000 0111 0100 1101 0110 0111 0111(2) converted from a signed binary (base two) and written as an integer in decimal system (base ten):
0101 1001 1001 1000 0100 1001 0001 0010 1011 0000 0111 0100 1101 0110 0111 0111(2) = 6 455 990 410 454 292 087(10)

Spaces were used to group digits: for binary, by 4, for decimal, by 3.

How to convert signed binary numbers from binary system to decimal (base ten)

To understand how to convert a signed binary number from binary system to decimal (base ten), the easiest way is to do it through an example - convert the binary number, 1001 1110, to base ten:

  • In a signed binary, the first bit (leftmost) is reserved for the sign, 1 = negative, 0 = positive. This bit does not count when calculating the absolute value (value without sign). The first bit is 1, so our number is negative.
  • Write bellow the binary number in base two, and above each bit that makes up the binary number write the corresponding power of 2 (numeral base) that its place value represents, starting with zero, from the right of the number (rightmost bit), walking to the left of the number and increasing each corresonding power of 2 by exactly one unit, but ignoring the very first bit (the leftmost, the one representing the sign):
  • powers of 2:   6 5 4 3 2 1 0
    digits: 1 0 0 1 1 1 1 0
  • Build the representation of the positive number in base 10, by taking each digit of the binary number, multiplying it by the corresponding power of 2 and then adding all the terms up, but also taking care of the number sign:

    1001 1110 =


    - (0 × 26 + 0 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 0 × 20)(10) =


    - (0 + 0 + 16 + 8 + 4 + 2 + 0)(10) =


    - (16 + 8 + 4 + 2)(10) =


    -30(10)

  • Binary signed number, 1001 1110 = -30(10), signed negative integer in base 10