1. Is this a positive or a negative number?
0101 1001 1001 1000 0100 1001 0001 0010 1011 0000 0111 0100 1101 0110 0111 0111 is the binary representation of a positive integer, on 64 bits (8 Bytes).
In a signed binary, the first bit (the leftmost) is reserved for the sign,
1 = negative, 0 = positive. This bit does not count when calculating the absolute value.
2. Construct the unsigned binary number.
Exclude the first bit (the leftmost), that is reserved for the sign:
0101 1001 1001 1000 0100 1001 0001 0010 1011 0000 0111 0100 1101 0110 0111 0111 = 101 1001 1001 1000 0100 1001 0001 0010 1011 0000 0111 0100 1101 0110 0111 0111
3. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent:
262
1 261
0 260
1 259
1 258
0 257
0 256
1 255
1 254
0 253
0 252
1 251
1 250
0 249
0 248
0 247
0 246
1 245
0 244
0 243
1 242
0 241
0 240
1 239
0 238
0 237
0 236
1 235
0 234
0 233
1 232
0 231
1 230
0 229
1 228
1 227
0 226
0 225
0 224
0 223
0 222
1 221
1 220
1 219
0 218
1 217
0 216
0 215
1 214
1 213
0 212
1 211
0 210
1 29
1 28
0 27
0 26
1 25
1 24
1 23
0 22
1 21
1 20
1
4. Multiply each bit by its corresponding power of 2 and add all the terms up.
101 1001 1001 1000 0100 1001 0001 0010 1011 0000 0111 0100 1101 0110 0111 0111(2) =
(1 × 262 + 0 × 261 + 1 × 260 + 1 × 259 + 0 × 258 + 0 × 257 + 1 × 256 + 1 × 255 + 0 × 254 + 0 × 253 + 1 × 252 + 1 × 251 + 0 × 250 + 0 × 249 + 0 × 248 + 0 × 247 + 1 × 246 + 0 × 245 + 0 × 244 + 1 × 243 + 0 × 242 + 0 × 241 + 1 × 240 + 0 × 239 + 0 × 238 + 0 × 237 + 1 × 236 + 0 × 235 + 0 × 234 + 1 × 233 + 0 × 232 + 1 × 231 + 0 × 230 + 1 × 229 + 1 × 228 + 0 × 227 + 0 × 226 + 0 × 225 + 0 × 224 + 0 × 223 + 1 × 222 + 1 × 221 + 1 × 220 + 0 × 219 + 1 × 218 + 0 × 217 + 0 × 216 + 1 × 215 + 1 × 214 + 0 × 213 + 1 × 212 + 0 × 211 + 1 × 210 + 1 × 29 + 0 × 28 + 0 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 1 × 20)(10) =
(4 611 686 018 427 387 904 + 0 + 1 152 921 504 606 846 976 + 576 460 752 303 423 488 + 0 + 0 + 72 057 594 037 927 936 + 36 028 797 018 963 968 + 0 + 0 + 4 503 599 627 370 496 + 2 251 799 813 685 248 + 0 + 0 + 0 + 0 + 70 368 744 177 664 + 0 + 0 + 8 796 093 022 208 + 0 + 0 + 1 099 511 627 776 + 0 + 0 + 0 + 68 719 476 736 + 0 + 0 + 8 589 934 592 + 0 + 2 147 483 648 + 0 + 536 870 912 + 268 435 456 + 0 + 0 + 0 + 0 + 0 + 4 194 304 + 2 097 152 + 1 048 576 + 0 + 262 144 + 0 + 0 + 32 768 + 16 384 + 0 + 4 096 + 0 + 1 024 + 512 + 0 + 0 + 64 + 32 + 16 + 0 + 4 + 2 + 1)(10) =
(4 611 686 018 427 387 904 + 1 152 921 504 606 846 976 + 576 460 752 303 423 488 + 72 057 594 037 927 936 + 36 028 797 018 963 968 + 4 503 599 627 370 496 + 2 251 799 813 685 248 + 70 368 744 177 664 + 8 796 093 022 208 + 1 099 511 627 776 + 68 719 476 736 + 8 589 934 592 + 2 147 483 648 + 536 870 912 + 268 435 456 + 4 194 304 + 2 097 152 + 1 048 576 + 262 144 + 32 768 + 16 384 + 4 096 + 1 024 + 512 + 64 + 32 + 16 + 4 + 2 + 1)(10) =
6 455 990 410 454 292 087(10)
5. If needed, adjust the sign of the integer number by the first digit (leftmost) of the signed binary:
0101 1001 1001 1000 0100 1001 0001 0010 1011 0000 0111 0100 1101 0110 0111 0111(2) = 6 455 990 410 454 292 087(10)
The number 0101 1001 1001 1000 0100 1001 0001 0010 1011 0000 0111 0100 1101 0110 0111 0111(2) converted from a signed binary (base two) and written as an integer in decimal system (base ten):
0101 1001 1001 1000 0100 1001 0001 0010 1011 0000 0111 0100 1101 0110 0111 0111(2) = 6 455 990 410 454 292 087(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.