### 1. Is this a positive or a negative number?

#### 0000 0000 1001 1010 0100 0100 1000 0110 is the binary representation of a positive integer, on 32 bits (4 Bytes).

#### In a signed binary, the first bit (the leftmost) is reserved for the sign,

#### 1 = negative, 0 = positive. This bit does not count when calculating the absolute value.

### 2. Construct the unsigned binary number.

#### Exclude the first bit (the leftmost), that is reserved for the sign:

#### 0000 0000 1001 1010 0100 0100 1000 0110 = 000 0000 1001 1010 0100 0100 1000 0110

### 3. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent:

2^{30}

0 2^{29}

0 2^{28}

0 2^{27}

0 2^{26}

0 2^{25}

0 2^{24}

0 2^{23}

1 2^{22}

0 2^{21}

0 2^{20}

1 2^{19}

1 2^{18}

0 2^{17}

1 2^{16}

0 2^{15}

0 2^{14}

1 2^{13}

0 2^{12}

0 2^{11}

0 2^{10}

1 2^{9}

0 2^{8}

0 2^{7}

1 2^{6}

0 2^{5}

0 2^{4}

0 2^{3}

0 2^{2}

1 2^{1}

1 2^{0}

0

### 4. Multiply each bit by its corresponding power of 2 and add all the terms up.

#### 000 0000 1001 1010 0100 0100 1000 0110_{(2)} =

#### (0 × 2^{30} + 0 × 2^{29} + 0 × 2^{28} + 0 × 2^{27} + 0 × 2^{26} + 0 × 2^{25} + 0 × 2^{24} + 1 × 2^{23} + 0 × 2^{22} + 0 × 2^{21} + 1 × 2^{20} + 1 × 2^{19} + 0 × 2^{18} + 1 × 2^{17} + 0 × 2^{16} + 0 × 2^{15} + 1 × 2^{14} + 0 × 2^{13} + 0 × 2^{12} + 0 × 2^{11} + 1 × 2^{10} + 0 × 2^{9} + 0 × 2^{8} + 1 × 2^{7} + 0 × 2^{6} + 0 × 2^{5} + 0 × 2^{4} + 0 × 2^{3} + 1 × 2^{2} + 1 × 2^{1} + 0 × 2^{0})_{(10)} =

#### (0 + 0 + 0 + 0 + 0 + 0 + 0 + 8 388 608 + 0 + 0 + 1 048 576 + 524 288 + 0 + 131 072 + 0 + 0 + 16 384 + 0 + 0 + 0 + 1 024 + 0 + 0 + 128 + 0 + 0 + 0 + 0 + 4 + 2 + 0)_{(10)} =

#### (8 388 608 + 1 048 576 + 524 288 + 131 072 + 16 384 + 1 024 + 128 + 4 + 2)_{(10)} =

#### 10 110 086_{(10)}

### 5. If needed, adjust the sign of the integer number by the first digit (leftmost) of the signed binary:

#### 0000 0000 1001 1010 0100 0100 1000 0110_{(2)} = 10 110 086_{(10)}

## The number 0000 0000 1001 1010 0100 0100 1000 0110_{(2)} converted from a signed binary (base two) and written as an integer in decimal system (base ten):

0000 0000 1001 1010 0100 0100 1000 0110_{(2)} = 10 110 086_{(10)}

Spaces were used to group digits: for binary, by 4, for decimal, by 3.