# Signed binary number 0000 0000 0111 1000 converted to an integer in base ten

• 214

0
• 213

0
• 212

0
• 211

0
• 210

0
• 29

0
• 28

0
• 27

0
• 26

1
• 25

1
• 24

1
• 23

1
• 22

0
• 21

0
• 20

0

## Latest signed binary numbers converted to signed integers in decimal system (base ten)

 0000 0000 0111 1000 = 120 Dec 02 22:04 UTC (GMT) 1111 1111 = -127 Dec 02 22:03 UTC (GMT) 1111 1101 1111 1111 1111 1111 1111 1100 = -2,113,929,212 Dec 02 22:03 UTC (GMT) 1111 1111 = -127 Dec 02 22:03 UTC (GMT) 0000 1111 0010 0001 = 3,873 Dec 02 22:02 UTC (GMT) 1000 1010 1100 1000 = -2,760 Dec 02 22:01 UTC (GMT) 0000 0101 1111 1101 0111 0011 0010 0111 = 100,496,167 Dec 02 22:01 UTC (GMT) 0000 1100 0000 1010 0010 0100 0000 1000 = 201,991,176 Dec 02 22:01 UTC (GMT) 0010 0100 0010 0100 0000 0001 0000 0100 0000 0001 0010 0100 1010 1010 1010 1010 = 2,604,207,601,237,666,474 Dec 02 22:00 UTC (GMT) 0000 0000 0000 0000 0000 0011 0110 0010 0101 1101 0011 0100 1101 1000 1001 0101 = 3,721,005,422,741 Dec 02 22:00 UTC (GMT) 0001 1011 1011 1010 = 7,098 Dec 02 22:00 UTC (GMT) 1111 0011 1111 1111 1111 1111 1111 1110 = -1,946,157,054 Dec 02 21:58 UTC (GMT) 0110 1001 0010 1010 = 26,922 Dec 02 21:58 UTC (GMT) All the converted signed binary numbers to integers in base ten

## How to convert signed binary numbers from binary system to decimal (base ten)

### To understand how to convert a signed binary number from binary system to decimal (base ten), the easiest way is to do it through an example - convert the binary number, 1001 1110, to base ten:

• In a signed binary, the first bit (leftmost) is reserved for the sign, 1 = negative, 0 = positive. This bit does not count when calculating the absolute value (value without sign). The first bit is 1, so our number is negative.
• Write bellow the binary number in base two, and above each bit that makes up the binary number write the corresponding power of 2 (numeral base) that its place value represents, starting with zero, from the right of the number (rightmost bit), walking to the left of the number and increasing each corresonding power of 2 by exactly one unit, but ignoring the very first bit (the leftmost, the one representing the sign):
•  powers of 2: 6 5 4 3 2 1 0 digits: 1 0 0 1 1 1 1 0
• Build the representation of the positive number in base 10, by taking each digit of the binary number, multiplying it by the corresponding power of 2 and then adding all the terms up, but also taking care of the number sign: