Signed binary 0000 0000 0000 0000 0000 0000 0000 0010 0000 0100 0010 0000 0100 0000 1001 1100(2) to an integer in decimal system (in base 10) = ?
1. Is this a positive or a negative number?
In a signed binary, first bit (the leftmost) is reserved for the sign, 1 = negative, 0 = positive. This bit does not count when calculating the absolute value.
0000 0000 0000 0000 0000 0000 0000 0010 0000 0100 0010 0000 0100 0000 1001 1100 is the binary representation of a positive integer, on 64 bits (8 Bytes).
2. Construct the unsigned binary number, exclude the first bit (the leftmost), that is reserved for the sign:
0000 0000 0000 0000 0000 0000 0000 0010 0000 0100 0010 0000 0100 0000 1001 1100 = 000 0000 0000 0000 0000 0000 0000 0010 0000 0100 0010 0000 0100 0000 1001 1100
3. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent:
262
0 261
0 260
0 259
0 258
0 257
0 256
0 255
0 254
0 253
0 252
0 251
0 250
0 249
0 248
0 247
0 246
0 245
0 244
0 243
0 242
0 241
0 240
0 239
0 238
0 237
0 236
0 235
0 234
0 233
1 232
0 231
0 230
0 229
0 228
0 227
0 226
1 225
0 224
0 223
0 222
0 221
1 220
0 219
0 218
0 217
0 216
0 215
0 214
1 213
0 212
0 211
0 210
0 29
0 28
0 27
1 26
0 25
0 24
1 23
1 22
1 21
0 20
0
4. Multiply each bit by its corresponding power of 2 and add all the terms up:
000 0000 0000 0000 0000 0000 0000 0010 0000 0100 0010 0000 0100 0000 1001 1100(2) =
(0 × 262 + 0 × 261 + 0 × 260 + 0 × 259 + 0 × 258 + 0 × 257 + 0 × 256 + 0 × 255 + 0 × 254 + 0 × 253 + 0 × 252 + 0 × 251 + 0 × 250 + 0 × 249 + 0 × 248 + 0 × 247 + 0 × 246 + 0 × 245 + 0 × 244 + 0 × 243 + 0 × 242 + 0 × 241 + 0 × 240 + 0 × 239 + 0 × 238 + 0 × 237 + 0 × 236 + 0 × 235 + 0 × 234 + 1 × 233 + 0 × 232 + 0 × 231 + 0 × 230 + 0 × 229 + 0 × 228 + 0 × 227 + 1 × 226 + 0 × 225 + 0 × 224 + 0 × 223 + 0 × 222 + 1 × 221 + 0 × 220 + 0 × 219 + 0 × 218 + 0 × 217 + 0 × 216 + 0 × 215 + 1 × 214 + 0 × 213 + 0 × 212 + 0 × 211 + 0 × 210 + 0 × 29 + 0 × 28 + 1 × 27 + 0 × 26 + 0 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 0 × 20)(10) =
(0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 8 589 934 592 + 0 + 0 + 0 + 0 + 0 + 0 + 67 108 864 + 0 + 0 + 0 + 0 + 2 097 152 + 0 + 0 + 0 + 0 + 0 + 0 + 16 384 + 0 + 0 + 0 + 0 + 0 + 0 + 128 + 0 + 0 + 16 + 8 + 4 + 0 + 0)(10) =
(8 589 934 592 + 67 108 864 + 2 097 152 + 16 384 + 128 + 16 + 8 + 4)(10) =
8 659 157 148(10)
5. If needed, adjust the sign of the integer number by the first digit (leftmost) of the signed binary:
0000 0000 0000 0000 0000 0000 0000 0010 0000 0100 0010 0000 0100 0000 1001 1100(2) = 8 659 157 148(10)
Number 0000 0000 0000 0000 0000 0000 0000 0010 0000 0100 0010 0000 0100 0000 1001 1100(2) converted from signed binary to an integer in decimal system (in base 10):
0000 0000 0000 0000 0000 0000 0000 0010 0000 0100 0010 0000 0100 0000 1001 1100(2) = 8 659 157 148(10)
Spaces used to group digits: for binary, by 4; for decimal, by 3.
More operations of this kind:
Convert signed binary numbers to integers in decimal system (base 10)
First bit (the leftmost) is reserved for the sign, 1 = negative, 0 = positive. This bit does not count when calculating the absolute value.
Entered binary number length must be: 2, 4, 8, 16, 32, or 64 - otherwise extra bits on 0 will be added in front (to the left).