Signed binary number 0000 0000 0000 0000 0000 0000 0000 0000 1010 0000 0001 1011 1101 1110 0110 1111 converted to an integer in base ten

Signed binary 0000 0000 0000 0000 0000 0000 0000 0000 1010 0000 0001 1011 1101 1110 0110 1111(2) to an integer in decimal system (in base 10) = ?

1. Is this a positive or a negative number?

In a signed binary, the first bit (the leftmost) is reserved for the sign,

1 = negative, 0 = positive.

This bit does not count when calculating the absolute value.


0000 0000 0000 0000 0000 0000 0000 0000 1010 0000 0001 1011 1101 1110 0110 1111 is the binary representation of a positive integer, on 64 bits (8 Bytes).


2. Construct the unsigned binary number.

Exclude the first bit (the leftmost), that is reserved for the sign:


0000 0000 0000 0000 0000 0000 0000 0000 1010 0000 0001 1011 1101 1110 0110 1111 = 000 0000 0000 0000 0000 0000 0000 0000 1010 0000 0001 1011 1101 1110 0110 1111


3. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent:

    • 262

      0
    • 261

      0
    • 260

      0
    • 259

      0
    • 258

      0
    • 257

      0
    • 256

      0
    • 255

      0
    • 254

      0
    • 253

      0
    • 252

      0
    • 251

      0
    • 250

      0
    • 249

      0
    • 248

      0
    • 247

      0
    • 246

      0
    • 245

      0
    • 244

      0
    • 243

      0
    • 242

      0
    • 241

      0
    • 240

      0
    • 239

      0
    • 238

      0
    • 237

      0
    • 236

      0
    • 235

      0
    • 234

      0
    • 233

      0
    • 232

      0
    • 231

      1
    • 230

      0
    • 229

      1
    • 228

      0
    • 227

      0
    • 226

      0
    • 225

      0
    • 224

      0
    • 223

      0
    • 222

      0
    • 221

      0
    • 220

      1
    • 219

      1
    • 218

      0
    • 217

      1
    • 216

      1
    • 215

      1
    • 214

      1
    • 213

      0
    • 212

      1
    • 211

      1
    • 210

      1
    • 29

      1
    • 28

      0
    • 27

      0
    • 26

      1
    • 25

      1
    • 24

      0
    • 23

      1
    • 22

      1
    • 21

      1
    • 20

      1

4. Multiply each bit by its corresponding power of 2 and add all the terms up:

000 0000 0000 0000 0000 0000 0000 0000 1010 0000 0001 1011 1101 1110 0110 1111(2) =


(0 × 262 + 0 × 261 + 0 × 260 + 0 × 259 + 0 × 258 + 0 × 257 + 0 × 256 + 0 × 255 + 0 × 254 + 0 × 253 + 0 × 252 + 0 × 251 + 0 × 250 + 0 × 249 + 0 × 248 + 0 × 247 + 0 × 246 + 0 × 245 + 0 × 244 + 0 × 243 + 0 × 242 + 0 × 241 + 0 × 240 + 0 × 239 + 0 × 238 + 0 × 237 + 0 × 236 + 0 × 235 + 0 × 234 + 0 × 233 + 0 × 232 + 1 × 231 + 0 × 230 + 1 × 229 + 0 × 228 + 0 × 227 + 0 × 226 + 0 × 225 + 0 × 224 + 0 × 223 + 0 × 222 + 0 × 221 + 1 × 220 + 1 × 219 + 0 × 218 + 1 × 217 + 1 × 216 + 1 × 215 + 1 × 214 + 0 × 213 + 1 × 212 + 1 × 211 + 1 × 210 + 1 × 29 + 0 × 28 + 0 × 27 + 1 × 26 + 1 × 25 + 0 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 1 × 20)(10) =


(0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 2 147 483 648 + 0 + 536 870 912 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 048 576 + 524 288 + 0 + 131 072 + 65 536 + 32 768 + 16 384 + 0 + 4 096 + 2 048 + 1 024 + 512 + 0 + 0 + 64 + 32 + 0 + 8 + 4 + 2 + 1)(10) =


(2 147 483 648 + 536 870 912 + 1 048 576 + 524 288 + 131 072 + 65 536 + 32 768 + 16 384 + 4 096 + 2 048 + 1 024 + 512 + 64 + 32 + 8 + 4 + 2 + 1)(10) =


2 686 180 975(10)

5. If needed, adjust the sign of the integer number by the first digit (leftmost) of the signed binary:

0000 0000 0000 0000 0000 0000 0000 0000 1010 0000 0001 1011 1101 1110 0110 1111(2) = 2 686 180 975(10)

Number 0000 0000 0000 0000 0000 0000 0000 0000 1010 0000 0001 1011 1101 1110 0110 1111(2) converted from signed binary to an integer in decimal system (in base 10):
0000 0000 0000 0000 0000 0000 0000 0000 1010 0000 0001 1011 1101 1110 0110 1111(2) = 2 686 180 975(10)

Spaces used to group digits: for binary, by 4; for decimal, by 3.


More operations of this kind:

0000 0000 0000 0000 0000 0000 0000 0000 1010 0000 0001 1011 1101 1110 0110 1110 = ?

0000 0000 0000 0000 0000 0000 0000 0000 1010 0000 0001 1011 1101 1110 0111 0000 = ?


Convert signed binary numbers to integers in decimal system (base 10)

The first bit (the leftmost) is reserved for the sign, 1 = negative, 0 = positive. This bit does not count when calculating the absolute value.

Entered binary number length must be: 2, 4, 8, 16, 32, or 64 - otherwise extra bits on 0 will be added in front (to the left).

How to convert a signed binary number to an integer in base ten:

1) Construct the unsigned binary number: exclude the first bit (the leftmost); this bit is reserved for the sign, 1 = negative, 0 = positive and does not count when calculating the absolute value (without sign).

2) Multiply each bit of the binary number by its corresponding power of 2 that its place value represents.

3) Add all the terms up to get the positive integer number in base ten.

4) Adjust the sign of the integer number by the first bit of the initial binary number.

Latest signed binary numbers converted to signed integers in decimal system (base ten)

0000 0000 0000 0000 0000 0000 0000 0000 1010 0000 0001 1011 1101 1110 0110 1111 = 2,686,180,975 Mar 24 09:26 UTC (GMT)
0000 1000 0001 0010 1101 1110 1101 0111 = 135,454,423 Mar 24 09:25 UTC (GMT)
1111 1111 1111 1111 1111 1101 1111 1001 = -2,147,483,129 Mar 24 09:25 UTC (GMT)
0000 0000 0000 0000 1101 1000 1110 1010 = 55,530 Mar 24 09:25 UTC (GMT)
1100 0000 0010 0011 0000 0000 0000 1001 = -1,076,035,593 Mar 24 09:25 UTC (GMT)
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1111 0110 = 81,985,529,216,486,902 Mar 24 09:25 UTC (GMT)
1111 1111 1111 1111 1011 0001 1110 0000 = -2,147,463,648 Mar 24 09:25 UTC (GMT)
1100 1011 1001 0110 = -19,350 Mar 24 09:25 UTC (GMT)
1011 0001 1100 1111 = -12,751 Mar 24 09:24 UTC (GMT)
1000 0100 1000 1110 0000 1011 1101 1110 = -76,418,014 Mar 24 09:24 UTC (GMT)
0110 0100 1111 0011 = 25,843 Mar 24 09:24 UTC (GMT)
0011 0111 1110 1101 = 14,317 Mar 24 09:24 UTC (GMT)
1100 0000 1100 0000 0000 0000 1100 0010 = -1,086,324,930 Mar 24 09:24 UTC (GMT)
All the converted signed binary numbers to integers in base ten

How to convert signed binary numbers from binary system to decimal (base ten)

To understand how to convert a signed binary number from binary system to decimal (base ten), the easiest way is to do it through an example - convert the binary number, 1001 1110, to base ten:

  • In a signed binary, the first bit (leftmost) is reserved for the sign, 1 = negative, 0 = positive. This bit does not count when calculating the absolute value (value without sign). The first bit is 1, so our number is negative.
  • Write bellow the binary number in base two, and above each bit that makes up the binary number write the corresponding power of 2 (numeral base) that its place value represents, starting with zero, from the right of the number (rightmost bit), walking to the left of the number and increasing each corresonding power of 2 by exactly one unit, but ignoring the very first bit (the leftmost, the one representing the sign):
  • powers of 2:   6 5 4 3 2 1 0
    digits: 1 0 0 1 1 1 1 0
  • Build the representation of the positive number in base 10, by taking each digit of the binary number, multiplying it by the corresponding power of 2 and then adding all the terms up, but also taking care of the number sign:

    1001 1110 =


    - (0 × 26 + 0 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 0 × 20)(10) =


    - (0 + 0 + 16 + 8 + 4 + 2 + 0)(10) =


    - (16 + 8 + 4 + 2)(10) =


    -30(10)

  • Binary signed number, 1001 1110 = -30(10), signed negative integer in base 10