1. Is this a positive or a negative number?
1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1110 0000 0000 0000 0010 1000 is the binary representation of a negative integer, on 64 bits (8 Bytes).
In a signed binary in one's complement representation, the first bit (the leftmost) indicates the sign, 1 = negative, 0 = positive.
2. Get the binary representation of the positive (unsigned) number.
* Run this step only if the number is negative *
Flip all the bits of the signed binary in one's complement representation (reverse the digits) - replace the bits set on 1 with 0s and the bits on 0 with 1s:
!(1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1110 0000 0000 0000 0010 1000) = 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 1111 1111 1111 1101 0111
3. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent:
263
0 262
0 261
0 260
0 259
0 258
0 257
0 256
0 255
0 254
0 253
0 252
0 251
0 250
0 249
0 248
0 247
0 246
0 245
0 244
0 243
0 242
0 241
0 240
0 239
0 238
0 237
0 236
0 235
0 234
0 233
0 232
0 231
0 230
0 229
0 228
0 227
0 226
0 225
0 224
0 223
0 222
0 221
0 220
1 219
1 218
1 217
1 216
1 215
1 214
1 213
1 212
1 211
1 210
1 29
1 28
1 27
1 26
1 25
0 24
1 23
0 22
1 21
1 20
1
4. Multiply each bit by its corresponding power of 2 and add all the terms up.
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 1111 1111 1111 1101 0111(2) =
(0 × 263 + 0 × 262 + 0 × 261 + 0 × 260 + 0 × 259 + 0 × 258 + 0 × 257 + 0 × 256 + 0 × 255 + 0 × 254 + 0 × 253 + 0 × 252 + 0 × 251 + 0 × 250 + 0 × 249 + 0 × 248 + 0 × 247 + 0 × 246 + 0 × 245 + 0 × 244 + 0 × 243 + 0 × 242 + 0 × 241 + 0 × 240 + 0 × 239 + 0 × 238 + 0 × 237 + 0 × 236 + 0 × 235 + 0 × 234 + 0 × 233 + 0 × 232 + 0 × 231 + 0 × 230 + 0 × 229 + 0 × 228 + 0 × 227 + 0 × 226 + 0 × 225 + 0 × 224 + 0 × 223 + 0 × 222 + 0 × 221 + 1 × 220 + 1 × 219 + 1 × 218 + 1 × 217 + 1 × 216 + 1 × 215 + 1 × 214 + 1 × 213 + 1 × 212 + 1 × 211 + 1 × 210 + 1 × 29 + 1 × 28 + 1 × 27 + 1 × 26 + 0 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 1 × 20)(10) =
(0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 048 576 + 524 288 + 262 144 + 131 072 + 65 536 + 32 768 + 16 384 + 8 192 + 4 096 + 2 048 + 1 024 + 512 + 256 + 128 + 64 + 0 + 16 + 0 + 4 + 2 + 1)(10) =
(1 048 576 + 524 288 + 262 144 + 131 072 + 65 536 + 32 768 + 16 384 + 8 192 + 4 096 + 2 048 + 1 024 + 512 + 256 + 128 + 64 + 16 + 4 + 2 + 1)(10) =
2 097 111(10)
5. If needed, adjust the sign of the integer number by the first digit (leftmost) of the signed binary:
1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1110 0000 0000 0000 0010 1000(2) = -2 097 111(10)
The signed binary number in one's complement representation 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1110 0000 0000 0000 0010 1000(2) converted and written as an integer in decimal system (base ten):
1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1110 0000 0000 0000 0010 1000(2) = -2 097 111(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.