#### In a signed binary in one's complement representation, the first bit (the leftmost) indicates the sign, 1 = negative, 0 = positive.

### 2. Get the binary representation of the positive (unsigned) number.

#### * Run this step only if the number is negative *

#### Flip all the bits of the signed binary in one's complement representation (reverse the digits) - replace the bits set on 1 with 0s and the bits on 0 with 1s:

#### * Not the case - the number is positive *

### 3. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent:

2^{31}

0 2^{30}

1 2^{29}

1 2^{28}

0 2^{27}

0 2^{26}

1 2^{25}

0 2^{24}

1 2^{23}

1 2^{22}

1 2^{21}

1 2^{20}

0 2^{19}

1 2^{18}

0 2^{17}

1 2^{16}

0 2^{15}

0 2^{14}

0 2^{13}

0 2^{12}

0 2^{11}

1 2^{10}

1 2^{9}

0 2^{8}

0 2^{7}

0 2^{6}

1 2^{5}

0 2^{4}

0 2^{3}

1 2^{2}

1 2^{1}

0 2^{0}

1

### 4. Multiply each bit by its corresponding power of 2 and add all the terms up.

#### 0110 0101 1110 1010 0000 1100 0100 1101_{(2)} =

#### (0 × 2^{31} + 1 × 2^{30} + 1 × 2^{29} + 0 × 2^{28} + 0 × 2^{27} + 1 × 2^{26} + 0 × 2^{25} + 1 × 2^{24} + 1 × 2^{23} + 1 × 2^{22} + 1 × 2^{21} + 0 × 2^{20} + 1 × 2^{19} + 0 × 2^{18} + 1 × 2^{17} + 0 × 2^{16} + 0 × 2^{15} + 0 × 2^{14} + 0 × 2^{13} + 0 × 2^{12} + 1 × 2^{11} + 1 × 2^{10} + 0 × 2^{9} + 0 × 2^{8} + 0 × 2^{7} + 1 × 2^{6} + 0 × 2^{5} + 0 × 2^{4} + 1 × 2^{3} + 1 × 2^{2} + 0 × 2^{1} + 1 × 2^{0})_{(10)} =

#### (0 + 1 073 741 824 + 536 870 912 + 0 + 0 + 67 108 864 + 0 + 16 777 216 + 8 388 608 + 4 194 304 + 2 097 152 + 0 + 524 288 + 0 + 131 072 + 0 + 0 + 0 + 0 + 0 + 2 048 + 1 024 + 0 + 0 + 0 + 64 + 0 + 0 + 8 + 4 + 0 + 1)_{(10)} =

#### (1 073 741 824 + 536 870 912 + 67 108 864 + 16 777 216 + 8 388 608 + 4 194 304 + 2 097 152 + 524 288 + 131 072 + 2 048 + 1 024 + 64 + 8 + 4 + 1)_{(10)} =

#### 1 709 837 389_{(10)}

### 5. If needed, adjust the sign of the integer number by the first digit (leftmost) of the signed binary:

#### 0110 0101 1110 1010 0000 1100 0100 1101_{(2)} = 1 709 837 389_{(10)}

## The signed binary number in one's complement representation 0110 0101 1110 1010 0000 1100 0100 1101_{(2)} converted and written as an integer in decimal system (base ten):

0110 0101 1110 1010 0000 1100 0100 1101_{(2)} = 1 709 837 389_{(10)}

Spaces were used to group digits: for binary, by 4, for decimal, by 3.