1. Is this a positive or a negative number?
0011 1100 1011 0000 1011 0010 1110 0001 is the binary representation of a positive integer, on 32 bits (4 Bytes).
In a signed binary in one's complement representation, the first bit (the leftmost) indicates the sign, 1 = negative, 0 = positive.
2. Get the binary representation of the positive (unsigned) number.
* Run this step only if the number is negative *
Flip all the bits of the signed binary in one's complement representation (reverse the digits) - replace the bits set on 1 with 0s and the bits on 0 with 1s:
* Not the case - the number is positive *
3. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent:
231
0 230
0 229
1 228
1 227
1 226
1 225
0 224
0 223
1 222
0 221
1 220
1 219
0 218
0 217
0 216
0 215
1 214
0 213
1 212
1 211
0 210
0 29
1 28
0 27
1 26
1 25
1 24
0 23
0 22
0 21
0 20
1
4. Multiply each bit by its corresponding power of 2 and add all the terms up.
0011 1100 1011 0000 1011 0010 1110 0001(2) =
(0 × 231 + 0 × 230 + 1 × 229 + 1 × 228 + 1 × 227 + 1 × 226 + 0 × 225 + 0 × 224 + 1 × 223 + 0 × 222 + 1 × 221 + 1 × 220 + 0 × 219 + 0 × 218 + 0 × 217 + 0 × 216 + 1 × 215 + 0 × 214 + 1 × 213 + 1 × 212 + 0 × 211 + 0 × 210 + 1 × 29 + 0 × 28 + 1 × 27 + 1 × 26 + 1 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 1 × 20)(10) =
(0 + 0 + 536 870 912 + 268 435 456 + 134 217 728 + 67 108 864 + 0 + 0 + 8 388 608 + 0 + 2 097 152 + 1 048 576 + 0 + 0 + 0 + 0 + 32 768 + 0 + 8 192 + 4 096 + 0 + 0 + 512 + 0 + 128 + 64 + 32 + 0 + 0 + 0 + 0 + 1)(10) =
(536 870 912 + 268 435 456 + 134 217 728 + 67 108 864 + 8 388 608 + 2 097 152 + 1 048 576 + 32 768 + 8 192 + 4 096 + 512 + 128 + 64 + 32 + 1)(10) =
1 018 213 089(10)
5. If needed, adjust the sign of the integer number by the first digit (leftmost) of the signed binary:
0011 1100 1011 0000 1011 0010 1110 0001(2) = 1 018 213 089(10)
The signed binary number in one's complement representation 0011 1100 1011 0000 1011 0010 1110 0001(2) converted and written as an integer in decimal system (base ten):
0011 1100 1011 0000 1011 0010 1110 0001(2) = 1 018 213 089(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.