0010 1111 0001 1111 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0001 0011 Signed Binary Number in One's Complement Representation, Converted and Written as a Decimal System Integer Number (in Base Ten). Steps Explained in Detail

Signed binary in one's complement representation 0010 1111 0001 1111 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0001 0011(2) converted to an integer in decimal system (in base ten) = ?

The steps we'll go through to make the conversion:

Get the binary representation of the positive (unsigned) number.

Map the unsigned binary number's digits.

Multiply each bit by its corresponding power of 2 and add all the terms up.

1. Is this a positive or a negative number?

In a signed binary in one's complement representation, the first bit (the leftmost) indicates the sign, 1 = negative, 0 = positive.


0010 1111 0001 1111 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0001 0011 is the binary representation of a positive integer, on 64 bits (8 Bytes).


2. Get the binary representation of the positive (unsigned) number.

* Run this step only if the number is negative *

Flip all the bits of the signed binary in one's complement representation (reverse the digits) - replace the bits set on 1 with 0s and the bits on 0 with 1s:

* Not the case - the number is positive *


3. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent:

    • 263

      0
    • 262

      0
    • 261

      1
    • 260

      0
    • 259

      1
    • 258

      1
    • 257

      1
    • 256

      1
    • 255

      0
    • 254

      0
    • 253

      0
    • 252

      1
    • 251

      1
    • 250

      1
    • 249

      1
    • 248

      1
    • 247

      0
    • 246

      0
    • 245

      0
    • 244

      0
    • 243

      0
    • 242

      0
    • 241

      0
    • 240

      1
    • 239

      0
    • 238

      0
    • 237

      0
    • 236

      0
    • 235

      0
    • 234

      0
    • 233

      0
    • 232

      0
    • 231

      0
    • 230

      0
    • 229

      0
    • 228

      0
    • 227

      0
    • 226

      0
    • 225

      0
    • 224

      0
    • 223

      0
    • 222

      0
    • 221

      0
    • 220

      0
    • 219

      0
    • 218

      0
    • 217

      0
    • 216

      0
    • 215

      0
    • 214

      0
    • 213

      0
    • 212

      0
    • 211

      0
    • 210

      0
    • 29

      0
    • 28

      0
    • 27

      0
    • 26

      0
    • 25

      0
    • 24

      1
    • 23

      0
    • 22

      0
    • 21

      1
    • 20

      1

4. Multiply each bit by its corresponding power of 2 and add all the terms up.

0010 1111 0001 1111 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0001 0011(2) =


(0 × 263 + 0 × 262 + 1 × 261 + 0 × 260 + 1 × 259 + 1 × 258 + 1 × 257 + 1 × 256 + 0 × 255 + 0 × 254 + 0 × 253 + 1 × 252 + 1 × 251 + 1 × 250 + 1 × 249 + 1 × 248 + 0 × 247 + 0 × 246 + 0 × 245 + 0 × 244 + 0 × 243 + 0 × 242 + 0 × 241 + 1 × 240 + 0 × 239 + 0 × 238 + 0 × 237 + 0 × 236 + 0 × 235 + 0 × 234 + 0 × 233 + 0 × 232 + 0 × 231 + 0 × 230 + 0 × 229 + 0 × 228 + 0 × 227 + 0 × 226 + 0 × 225 + 0 × 224 + 0 × 223 + 0 × 222 + 0 × 221 + 0 × 220 + 0 × 219 + 0 × 218 + 0 × 217 + 0 × 216 + 0 × 215 + 0 × 214 + 0 × 213 + 0 × 212 + 0 × 211 + 0 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 1 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 1 × 20)(10) =


(0 + 0 + 2 305 843 009 213 693 952 + 0 + 576 460 752 303 423 488 + 288 230 376 151 711 744 + 144 115 188 075 855 872 + 72 057 594 037 927 936 + 0 + 0 + 0 + 4 503 599 627 370 496 + 2 251 799 813 685 248 + 1 125 899 906 842 624 + 562 949 953 421 312 + 281 474 976 710 656 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 099 511 627 776 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 16 + 0 + 0 + 2 + 1)(10) =


(2 305 843 009 213 693 952 + 576 460 752 303 423 488 + 288 230 376 151 711 744 + 144 115 188 075 855 872 + 72 057 594 037 927 936 + 4 503 599 627 370 496 + 2 251 799 813 685 248 + 1 125 899 906 842 624 + 562 949 953 421 312 + 281 474 976 710 656 + 1 099 511 627 776 + 16 + 2 + 1)(10) =


3 395 433 743 572 271 123(10)

5. If needed, adjust the sign of the integer number by the first digit (leftmost) of the signed binary:

0010 1111 0001 1111 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0001 0011(2) = 3 395 433 743 572 271 123(10)

The signed binary number in one's complement representation 0010 1111 0001 1111 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0001 0011(2) converted and written as an integer in decimal system (base ten):
0010 1111 0001 1111 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0001 0011(2) = 3 395 433 743 572 271 123(10)

Spaces were used to group digits: for binary, by 4, for decimal, by 3.

The signed binary in one's complement representation 0010 1111 0001 1111 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0001 0010 converted and written as an integer number in decimal system (in base ten) = ?

The signed binary in one's complement representation 0010 1111 0001 1111 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0001 0100 converted and written as an integer number in decimal system (in base ten) = ?

Convert signed binary numbers in one's complement representation to decimal system (base ten) integers

Binary number's length must be: 2, 4, 8, 16, 32, 64 - or else extra bits on 0 are added in front (to the left).

How to convert a signed binary number in one's complement representation to an integer in base ten:

1) In a signed binary one's complement, first bit (leftmost) indicates the sign, 1 = negative, 0 = positive.

2) Construct the unsigned binary number: flip all the bits in the signed binary one's complement representation (reversing the digits) - replace the bits set on 1 with 0s and the bits on 0 with 1s.

3) Multiply each bit of the binary number by its corresponding power of 2 that its place value represents.

4) Add all the terms up to get the positive integer number in base ten.

5) Adjust the sign of the integer number by the first bit of the initial binary number.

The latest binary numbers in one's complement representation converted to signed integers numbers written in decimal system (base ten)

Convert signed binary number written in one's complement representation 0010 1111 0001 1111 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0001 0011, write it as a decimal system (base ten) integer Oct 03 13:15 UTC (GMT)
Convert signed binary number written in one's complement representation 0011 0100, write it as a decimal system (base ten) integer Oct 03 13:15 UTC (GMT)
Convert signed binary number written in one's complement representation 1010 1011, write it as a decimal system (base ten) integer Oct 03 13:14 UTC (GMT)
Convert signed binary number written in one's complement representation 1010 0000 1000 1101 1010 0000 0111 1110, write it as a decimal system (base ten) integer Oct 03 13:14 UTC (GMT)
Convert signed binary number written in one's complement representation 0100 0011 0110 0100 0010 0110 0101 1100, write it as a decimal system (base ten) integer Oct 03 13:14 UTC (GMT)
Convert signed binary number written in one's complement representation 1001 1010 0011 1000, write it as a decimal system (base ten) integer Oct 03 13:14 UTC (GMT)
Convert signed binary number written in one's complement representation 0010 0101 0101 0010 1010 0101 0100 0101 0101 0010 0101 0010 1001 0100 1010 0100, write it as a decimal system (base ten) integer Oct 03 13:13 UTC (GMT)
Convert signed binary number written in one's complement representation 0011 1011, write it as a decimal system (base ten) integer Oct 03 13:13 UTC (GMT)
Convert signed binary number written in one's complement representation 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 1101 1011, write it as a decimal system (base ten) integer Oct 03 13:13 UTC (GMT)
Convert signed binary number written in one's complement representation 1001 1010 0011 0110, write it as a decimal system (base ten) integer Oct 03 13:12 UTC (GMT)
Convert signed binary number written in one's complement representation 1011 0011 0001 1101, write it as a decimal system (base ten) integer Oct 03 13:12 UTC (GMT)
Convert signed binary number written in one's complement representation 1011 1101 1000 0000, write it as a decimal system (base ten) integer Oct 03 13:12 UTC (GMT)
Convert signed binary number written in one's complement representation 0111 1110 0011 0001, write it as a decimal system (base ten) integer Oct 03 13:11 UTC (GMT)
All the signed binary numbers in one's complement representation converted to decimal system (base ten) integers

How to convert signed binary numbers in one's complement representation from binary system to decimal

To understand how to convert a signed binary number in one's complement representation from binary system to decimal (base ten), the easiest way is to do it through an example - convert binary, 1001 1101, to base ten:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal