1. Is this a positive or a negative number?
0000 0000 1010 0110 1100 0010 0100 0000 1110 1000 1100 1010 0100 0000 1100 1110 is the binary representation of a positive integer, on 64 bits (8 Bytes).
In a signed binary in one's complement representation, the first bit (the leftmost) indicates the sign, 1 = negative, 0 = positive.
2. Get the binary representation of the positive (unsigned) number.
* Run this step only if the number is negative *
Flip all the bits of the signed binary in one's complement representation (reverse the digits) - replace the bits set on 1 with 0s and the bits on 0 with 1s:
* Not the case - the number is positive *
3. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent:
263
0 262
0 261
0 260
0 259
0 258
0 257
0 256
0 255
1 254
0 253
1 252
0 251
0 250
1 249
1 248
0 247
1 246
1 245
0 244
0 243
0 242
0 241
1 240
0 239
0 238
1 237
0 236
0 235
0 234
0 233
0 232
0 231
1 230
1 229
1 228
0 227
1 226
0 225
0 224
0 223
1 222
1 221
0 220
0 219
1 218
0 217
1 216
0 215
0 214
1 213
0 212
0 211
0 210
0 29
0 28
0 27
1 26
1 25
0 24
0 23
1 22
1 21
1 20
0
4. Multiply each bit by its corresponding power of 2 and add all the terms up.
0000 0000 1010 0110 1100 0010 0100 0000 1110 1000 1100 1010 0100 0000 1100 1110(2) =
(0 × 263 + 0 × 262 + 0 × 261 + 0 × 260 + 0 × 259 + 0 × 258 + 0 × 257 + 0 × 256 + 1 × 255 + 0 × 254 + 1 × 253 + 0 × 252 + 0 × 251 + 1 × 250 + 1 × 249 + 0 × 248 + 1 × 247 + 1 × 246 + 0 × 245 + 0 × 244 + 0 × 243 + 0 × 242 + 1 × 241 + 0 × 240 + 0 × 239 + 1 × 238 + 0 × 237 + 0 × 236 + 0 × 235 + 0 × 234 + 0 × 233 + 0 × 232 + 1 × 231 + 1 × 230 + 1 × 229 + 0 × 228 + 1 × 227 + 0 × 226 + 0 × 225 + 0 × 224 + 1 × 223 + 1 × 222 + 0 × 221 + 0 × 220 + 1 × 219 + 0 × 218 + 1 × 217 + 0 × 216 + 0 × 215 + 1 × 214 + 0 × 213 + 0 × 212 + 0 × 211 + 0 × 210 + 0 × 29 + 0 × 28 + 1 × 27 + 1 × 26 + 0 × 25 + 0 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 0 × 20)(10) =
(0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 36 028 797 018 963 968 + 0 + 9 007 199 254 740 992 + 0 + 0 + 1 125 899 906 842 624 + 562 949 953 421 312 + 0 + 140 737 488 355 328 + 70 368 744 177 664 + 0 + 0 + 0 + 0 + 2 199 023 255 552 + 0 + 0 + 274 877 906 944 + 0 + 0 + 0 + 0 + 0 + 0 + 2 147 483 648 + 1 073 741 824 + 536 870 912 + 0 + 134 217 728 + 0 + 0 + 0 + 8 388 608 + 4 194 304 + 0 + 0 + 524 288 + 0 + 131 072 + 0 + 0 + 16 384 + 0 + 0 + 0 + 0 + 0 + 0 + 128 + 64 + 0 + 0 + 8 + 4 + 2 + 0)(10) =
(36 028 797 018 963 968 + 9 007 199 254 740 992 + 1 125 899 906 842 624 + 562 949 953 421 312 + 140 737 488 355 328 + 70 368 744 177 664 + 2 199 023 255 552 + 274 877 906 944 + 2 147 483 648 + 1 073 741 824 + 536 870 912 + 134 217 728 + 8 388 608 + 4 194 304 + 524 288 + 131 072 + 16 384 + 128 + 64 + 8 + 4 + 2)(10) =
46 938 430 173 233 358(10)
5. If needed, adjust the sign of the integer number by the first digit (leftmost) of the signed binary:
0000 0000 1010 0110 1100 0010 0100 0000 1110 1000 1100 1010 0100 0000 1100 1110(2) = 46 938 430 173 233 358(10)
The signed binary number in one's complement representation 0000 0000 1010 0110 1100 0010 0100 0000 1110 1000 1100 1010 0100 0000 1100 1110(2) converted and written as an integer in decimal system (base ten):
0000 0000 1010 0110 1100 0010 0100 0000 1110 1000 1100 1010 0100 0000 1100 1110(2) = 46 938 430 173 233 358(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.