One's Complement: Binary -> Integer: 0000 0000 0000 0000 0000 0000 0000 1011 0111 1011 0011 1110 0111 1011 1010 0001 Signed Binary Number in One's Complement Representation, Converted and Written as a Decimal System Integer (in Base Ten)
Signed binary in one's complement representation 0000 0000 0000 0000 0000 0000 0000 1011 0111 1011 0011 1110 0111 1011 1010 0001(2) converted to an integer in decimal system (in base ten) = ?
1. Is this a positive or a negative number?
In a signed binary in one's complement representation, the first bit (the leftmost) indicates the sign, 1 = negative, 0 = positive.
0000 0000 0000 0000 0000 0000 0000 1011 0111 1011 0011 1110 0111 1011 1010 0001 is the binary representation of a positive integer, on 64 bits (8 Bytes).
2. Get the binary representation of the positive (unsigned) number.
* Run this step only if the number is negative *
Flip all the bits of the signed binary in one's complement representation (reverse the digits) - replace the bits set on 1 with 0s and the bits on 0 with 1s:
* Not the case - the number is positive *
3. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent:
263
0 262
0 261
0 260
0 259
0 258
0 257
0 256
0 255
0 254
0 253
0 252
0 251
0 250
0 249
0 248
0 247
0 246
0 245
0 244
0 243
0 242
0 241
0 240
0 239
0 238
0 237
0 236
0 235
1 234
0 233
1 232
1 231
0 230
1 229
1 228
1 227
1 226
0 225
1 224
1 223
0 222
0 221
1 220
1 219
1 218
1 217
1 216
0 215
0 214
1 213
1 212
1 211
1 210
0 29
1 28
1 27
1 26
0 25
1 24
0 23
0 22
0 21
0 20
1
4. Multiply each bit by its corresponding power of 2 and add all the terms up.
0000 0000 0000 0000 0000 0000 0000 1011 0111 1011 0011 1110 0111 1011 1010 0001(2) =
(0 × 263 + 0 × 262 + 0 × 261 + 0 × 260 + 0 × 259 + 0 × 258 + 0 × 257 + 0 × 256 + 0 × 255 + 0 × 254 + 0 × 253 + 0 × 252 + 0 × 251 + 0 × 250 + 0 × 249 + 0 × 248 + 0 × 247 + 0 × 246 + 0 × 245 + 0 × 244 + 0 × 243 + 0 × 242 + 0 × 241 + 0 × 240 + 0 × 239 + 0 × 238 + 0 × 237 + 0 × 236 + 1 × 235 + 0 × 234 + 1 × 233 + 1 × 232 + 0 × 231 + 1 × 230 + 1 × 229 + 1 × 228 + 1 × 227 + 0 × 226 + 1 × 225 + 1 × 224 + 0 × 223 + 0 × 222 + 1 × 221 + 1 × 220 + 1 × 219 + 1 × 218 + 1 × 217 + 0 × 216 + 0 × 215 + 1 × 214 + 1 × 213 + 1 × 212 + 1 × 211 + 0 × 210 + 1 × 29 + 1 × 28 + 1 × 27 + 0 × 26 + 1 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 1 × 20)(10) =
(0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 34 359 738 368 + 0 + 8 589 934 592 + 4 294 967 296 + 0 + 1 073 741 824 + 536 870 912 + 268 435 456 + 134 217 728 + 0 + 33 554 432 + 16 777 216 + 0 + 0 + 2 097 152 + 1 048 576 + 524 288 + 262 144 + 131 072 + 0 + 0 + 16 384 + 8 192 + 4 096 + 2 048 + 0 + 512 + 256 + 128 + 0 + 32 + 0 + 0 + 0 + 0 + 1)(10) =
(34 359 738 368 + 8 589 934 592 + 4 294 967 296 + 1 073 741 824 + 536 870 912 + 268 435 456 + 134 217 728 + 33 554 432 + 16 777 216 + 2 097 152 + 1 048 576 + 524 288 + 262 144 + 131 072 + 16 384 + 8 192 + 4 096 + 2 048 + 512 + 256 + 128 + 32 + 1)(10) =
49 312 332 705(10)
5. If needed, adjust the sign of the integer number by the first digit (leftmost) of the signed binary:
0000 0000 0000 0000 0000 0000 0000 1011 0111 1011 0011 1110 0111 1011 1010 0001(2) = 49 312 332 705(10)
The signed binary number in one's complement representation 0000 0000 0000 0000 0000 0000 0000 1011 0111 1011 0011 1110 0111 1011 1010 0001(2) converted and written as an integer in decimal system (base ten):
0000 0000 0000 0000 0000 0000 0000 1011 0111 1011 0011 1110 0111 1011 1010 0001(2) = 49 312 332 705(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.
Convert signed binary numbers in one's complement representation to decimal system (base ten) integers
Binary number's length must be: 2, 4, 8, 16, 32, 64 - or else extra bits on 0 are added in front (to the left).
How to convert a signed binary number in one's complement representation to an integer in base ten:
1) In a signed binary one's complement, first bit (leftmost) indicates the sign, 1 = negative, 0 = positive.
2) Construct the unsigned binary number: flip all the bits in the signed binary one's complement representation (reversing the digits) - replace the bits set on 1 with 0s and the bits on 0 with 1s.
3) Multiply each bit of the binary number by its corresponding power of 2 that its place value represents.
4) Add all the terms up to get the positive integer number in base ten.
5) Adjust the sign of the integer number by the first bit of the initial binary number.