Signed binary one's complement 0000 0000 0000 0000 0000 0000 0000 0000 1000 1110 0101 0010 1010 0100 1011 0000(2) to an integer in decimal system (in base 10) = ?
1. Is this a positive or a negative number?
In a signed binary one's complement, first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0000 0000 0000 0000 0000 0000 0000 0000 1000 1110 0101 0010 1010 0100 1011 0000 is the binary representation of a positive integer, on 64 bits (8 Bytes).
2. Get the binary representation of the positive (unsigned) number:
* Run this step only if the number is negative *
Flip all the bits in the signed binary one's complement representation (reverse the digits) - replace the bits set on 1 with 0s and the bits on 0 with 1s:
* Not the case *
3. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent:
263
0 262
0 261
0 260
0 259
0 258
0 257
0 256
0 255
0 254
0 253
0 252
0 251
0 250
0 249
0 248
0 247
0 246
0 245
0 244
0 243
0 242
0 241
0 240
0 239
0 238
0 237
0 236
0 235
0 234
0 233
0 232
0 231
1 230
0 229
0 228
0 227
1 226
1 225
1 224
0 223
0 222
1 221
0 220
1 219
0 218
0 217
1 216
0 215
1 214
0 213
1 212
0 211
0 210
1 29
0 28
0 27
1 26
0 25
1 24
1 23
0 22
0 21
0 20
0
4. Multiply each bit by its corresponding power of 2 and add all the terms up:
0000 0000 0000 0000 0000 0000 0000 0000 1000 1110 0101 0010 1010 0100 1011 0000(2) =
(0 × 263 + 0 × 262 + 0 × 261 + 0 × 260 + 0 × 259 + 0 × 258 + 0 × 257 + 0 × 256 + 0 × 255 + 0 × 254 + 0 × 253 + 0 × 252 + 0 × 251 + 0 × 250 + 0 × 249 + 0 × 248 + 0 × 247 + 0 × 246 + 0 × 245 + 0 × 244 + 0 × 243 + 0 × 242 + 0 × 241 + 0 × 240 + 0 × 239 + 0 × 238 + 0 × 237 + 0 × 236 + 0 × 235 + 0 × 234 + 0 × 233 + 0 × 232 + 1 × 231 + 0 × 230 + 0 × 229 + 0 × 228 + 1 × 227 + 1 × 226 + 1 × 225 + 0 × 224 + 0 × 223 + 1 × 222 + 0 × 221 + 1 × 220 + 0 × 219 + 0 × 218 + 1 × 217 + 0 × 216 + 1 × 215 + 0 × 214 + 1 × 213 + 0 × 212 + 0 × 211 + 1 × 210 + 0 × 29 + 0 × 28 + 1 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 0 × 20)(10) =
(0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 2 147 483 648 + 0 + 0 + 0 + 134 217 728 + 67 108 864 + 33 554 432 + 0 + 0 + 4 194 304 + 0 + 1 048 576 + 0 + 0 + 131 072 + 0 + 32 768 + 0 + 8 192 + 0 + 0 + 1 024 + 0 + 0 + 128 + 0 + 32 + 16 + 0 + 0 + 0 + 0)(10) =
(2 147 483 648 + 134 217 728 + 67 108 864 + 33 554 432 + 4 194 304 + 1 048 576 + 131 072 + 32 768 + 8 192 + 1 024 + 128 + 32 + 16)(10) =
2 387 780 784(10)
5. If needed, adjust the sign of the integer number by the first digit (leftmost) of the signed binary:
0000 0000 0000 0000 0000 0000 0000 0000 1000 1110 0101 0010 1010 0100 1011 0000(2) = 2 387 780 784(10)
Number 0000 0000 0000 0000 0000 0000 0000 0000 1000 1110 0101 0010 1010 0100 1011 0000(2) converted from signed binary one's complement representation to an integer in decimal system (in base 10):
0000 0000 0000 0000 0000 0000 0000 0000 1000 1110 0101 0010 1010 0100 1011 0000(2) = 2 387 780 784(10)
Spaces used to group digits: for binary, by 4; for decimal, by 3.
More operations of this kind:
Convert signed binary one's complement numbers to decimal system (base ten) integers
Entered binary number length must be: 2, 4, 8, 16, 32, or 64 - otherwise extra bits on 0 will be added in front (to the left).