1. Is this a positive or a negative number?
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0110 1100 0111 1001 1101 is the binary representation of a positive integer, on 64 bits (8 Bytes).
In a signed binary in one's complement representation, the first bit (the leftmost) indicates the sign, 1 = negative, 0 = positive.
2. Get the binary representation of the positive (unsigned) number.
* Run this step only if the number is negative *
Flip all the bits of the signed binary in one's complement representation (reverse the digits) - replace the bits set on 1 with 0s and the bits on 0 with 1s:
* Not the case - the number is positive *
3. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent:
263
0 262
0 261
0 260
0 259
0 258
0 257
0 256
0 255
0 254
0 253
0 252
0 251
0 250
0 249
0 248
0 247
0 246
0 245
0 244
0 243
0 242
0 241
0 240
0 239
0 238
0 237
0 236
0 235
0 234
0 233
0 232
0 231
0 230
0 229
0 228
0 227
0 226
0 225
0 224
0 223
0 222
0 221
0 220
0 219
0 218
1 217
1 216
0 215
1 214
1 213
0 212
0 211
0 210
1 29
1 28
1 27
1 26
0 25
0 24
1 23
1 22
1 21
0 20
1
4. Multiply each bit by its corresponding power of 2 and add all the terms up.
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0110 1100 0111 1001 1101(2) =
(0 × 263 + 0 × 262 + 0 × 261 + 0 × 260 + 0 × 259 + 0 × 258 + 0 × 257 + 0 × 256 + 0 × 255 + 0 × 254 + 0 × 253 + 0 × 252 + 0 × 251 + 0 × 250 + 0 × 249 + 0 × 248 + 0 × 247 + 0 × 246 + 0 × 245 + 0 × 244 + 0 × 243 + 0 × 242 + 0 × 241 + 0 × 240 + 0 × 239 + 0 × 238 + 0 × 237 + 0 × 236 + 0 × 235 + 0 × 234 + 0 × 233 + 0 × 232 + 0 × 231 + 0 × 230 + 0 × 229 + 0 × 228 + 0 × 227 + 0 × 226 + 0 × 225 + 0 × 224 + 0 × 223 + 0 × 222 + 0 × 221 + 0 × 220 + 0 × 219 + 1 × 218 + 1 × 217 + 0 × 216 + 1 × 215 + 1 × 214 + 0 × 213 + 0 × 212 + 0 × 211 + 1 × 210 + 1 × 29 + 1 × 28 + 1 × 27 + 0 × 26 + 0 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20)(10) =
(0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 262 144 + 131 072 + 0 + 32 768 + 16 384 + 0 + 0 + 0 + 1 024 + 512 + 256 + 128 + 0 + 0 + 16 + 8 + 4 + 0 + 1)(10) =
(262 144 + 131 072 + 32 768 + 16 384 + 1 024 + 512 + 256 + 128 + 16 + 8 + 4 + 1)(10) =
444 317(10)
5. If needed, adjust the sign of the integer number by the first digit (leftmost) of the signed binary:
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0110 1100 0111 1001 1101(2) = 444 317(10)
The signed binary number in one's complement representation 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0110 1100 0111 1001 1101(2) converted and written as an integer in decimal system (base ten):
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0110 1100 0111 1001 1101(2) = 444 317(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.