64 bit double precision IEEE 754 binary floating point number 1 - 111 0000 0000 - 0111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 converted to decimal base ten (double)

How to convert 64 bit double precision IEEE 754 binary floating point:
1 - 111 0000 0000 - 0111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111
to decimal system (base ten)

1. Identify the elements that make up the binary representation of the number:

First bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.


The next 11 bits contain the exponent:
111 0000 0000


The last 52 bits contain the mantissa:
0111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111

2. Convert the exponent from binary (base 2) to decimal (base 10):

The exponent is allways a positive integer.

111 0000 0000(2) =


1 × 210 + 1 × 29 + 1 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 0 × 20 =


1,024 + 512 + 256 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 =


1,024 + 512 + 256 =


1,792(10)

3. Adjust the exponent.

Subtract the excess bits: 2(11 - 1) - 1 = 1023, that is due to the 11 bit excess/bias notation:

Exponent adjusted = 1,792 - 1023 = 769


4. Convert the mantissa from binary (base 2) to decimal (base 10):

Mantissa represents the number's fractional part (the excess beyond the number's integer part, comma delimited)

0111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111(2) =

0 × 2-1 + 1 × 2-2 + 1 × 2-3 + 1 × 2-4 + 1 × 2-5 + 1 × 2-6 + 1 × 2-7 + 1 × 2-8 + 1 × 2-9 + 1 × 2-10 + 1 × 2-11 + 1 × 2-12 + 1 × 2-13 + 1 × 2-14 + 1 × 2-15 + 1 × 2-16 + 1 × 2-17 + 1 × 2-18 + 1 × 2-19 + 1 × 2-20 + 1 × 2-21 + 1 × 2-22 + 1 × 2-23 + 1 × 2-24 + 1 × 2-25 + 1 × 2-26 + 1 × 2-27 + 1 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 1 × 2-32 + 1 × 2-33 + 1 × 2-34 + 1 × 2-35 + 1 × 2-36 + 1 × 2-37 + 1 × 2-38 + 1 × 2-39 + 1 × 2-40 + 1 × 2-41 + 1 × 2-42 + 1 × 2-43 + 1 × 2-44 + 1 × 2-45 + 1 × 2-46 + 1 × 2-47 + 1 × 2-48 + 1 × 2-49 + 1 × 2-50 + 1 × 2-51 + 1 × 2-52 =


0 + 0.25 + 0.125 + 0.062 5 + 0.031 25 + 0.015 625 + 0.007 812 5 + 0.003 906 25 + 0.001 953 125 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 + 0.000 000 059 604 644 775 390 625 + 0.000 000 029 802 322 387 695 312 5 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 007 450 580 596 923 828 125 + 0.000 000 003 725 290 298 461 914 062 5 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0.000 000 000 116 415 321 826 934 814 453 125 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =


0.25 + 0.125 + 0.062 5 + 0.031 25 + 0.015 625 + 0.007 812 5 + 0.003 906 25 + 0.001 953 125 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 + 0.000 000 059 604 644 775 390 625 + 0.000 000 029 802 322 387 695 312 5 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 007 450 580 596 923 828 125 + 0.000 000 003 725 290 298 461 914 062 5 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0.000 000 000 116 415 321 826 934 814 453 125 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =


0.499 999 999 999 999 777 955 395 074 968 691 915 273 666 381 835 937 5(10)

5. Put all the numbers into expression to calculate the double precision floating point decimal value:

(-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =


(-1)1 × (1 + 0.499 999 999 999 999 777 955 395 074 968 691 915 273 666 381 835 937 5) × 2769 =


-1.499 999 999 999 999 777 955 395 074 968 691 915 273 666 381 835 937 5 × 2769 =


-4 657 554 276 902 126 115 990 405 577 639 095 324 679 632 122 485 865 382 403 017 478 439 108 745 900 456 131 967 774 298 458 961 917 768 962 949 115 319 740 395 403 046 215 353 091 093 449 837 929 032 003 469 724 427 309 179 222 951 319 718 834 747 304 960 298 036 924 167 202 208 069 729 449 049 111 658 496

Conclusion:

1 - 111 0000 0000 - 0111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111
converted from
64 bit double precision IEEE 754 binary floating point
to
base ten decimal system (double) =

-4 657 554 276 902 126 115 990 405 577 639 095 324 679 632 122 485 865 382 403 017 478 439 108 745 900 456 131 967 774 298 458 961 917 768 962 949 115 319 740 395 403 046 215 353 091 093 449 837 929 032 003 469 724 427 309 179 222 951 319 718 834 747 304 960 298 036 924 167 202 208 069 729 449 049 111 658 496(10)

More operations of this kind:

1 - 111 0000 0000 - 0111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1110 = ?

1 - 111 0000 0000 - 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = ?


Convert 64 bit double precision IEEE 754 floating point standard binary numbers to base ten decimal system (double)

64 bit double precision IEEE 754 binary floating point standard representation of numbers requires three building blocks: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

Latest 64 bit double precision IEEE 754 floating point binary standard numbers converted to decimal base ten (double)

1 - 111 0000 0000 - 0111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 = -4 657 554 276 902 126 115 990 405 577 639 095 324 679 632 122 485 865 382 403 017 478 439 108 745 900 456 131 967 774 298 458 961 917 768 962 949 115 319 740 395 403 046 215 353 091 093 449 837 929 032 003 469 724 427 309 179 222 951 319 718 834 747 304 960 298 036 924 167 202 208 069 729 449 049 111 658 496 Dec 02 22:30 UTC (GMT)
0 - 100 0001 1010 - 0111 1111 0011 0110 1101 1111 1110 0011 1010 0011 1111 0110 0001 = 200 914 687.113 764 792 680 740 356 445 312 5 Dec 02 22:30 UTC (GMT)
1 - 100 0011 1100 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 0000 0001 = -3 459 934 436 076 814 848 Dec 02 22:29 UTC (GMT)
0 - 100 0000 1000 - 1011 1110 0101 1001 0100 0110 0000 0000 0000 0000 0000 0000 0010 = 892.697 448 730 468 977 373 675 443 232 059 478 759 765 625 Dec 02 22:28 UTC (GMT)
0 - 011 1111 1111 - 0101 0100 0111 1010 1110 0001 0100 0111 1010 1110 0001 0100 0111 = 1.329 999 999 999 999 849 009 668 650 978 710 502 386 093 139 648 437 5 Dec 02 22:27 UTC (GMT)
0 - 100 0000 1000 - 0001 1110 1010 0000 1110 0101 0110 0000 0100 0001 1000 1001 0011 = 573.256 999 999 999 948 158 801 998 943 090 438 842 773 437 5 Dec 02 22:27 UTC (GMT)
0 - 110 0000 0001 - 1011 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 = 93 854 655 509 598 167 788 492 516 128 217 628 132 234 292 307 080 462 794 004 876 605 033 248 558 579 405 462 019 023 637 256 748 217 516 048 113 003 144 208 443 123 182 618 566 726 594 122 459 820 064 768 Dec 02 22:27 UTC (GMT)
0 - 010 0001 0010 - 0101 0010 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 051 647 517 895 415 191 655 941 276 616 517 724 237 064 590 082 800 897 661 451 410 153 786 836 560 933 555 238 022 023 881 044 882 452 717 795 550 226 013 835 344 592 459 513 816 175 863 334 594 211 959 268 071 4 Dec 02 22:25 UTC (GMT)
0 - 100 0000 0100 - 1110 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 61 Dec 02 22:23 UTC (GMT)
1 - 111 0110 0000 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -246 006 311 446 272 417 135 694 895 366 447 328 831 463 738 361 430 131 889 861 407 236 509 911 043 906 984 606 020 737 387 080 298 687 645 418 100 644 428 599 105 378 407 753 391 907 201 399 550 988 776 412 284 181 771 799 458 695 654 166 637 769 167 516 870 901 097 035 133 833 253 825 096 549 816 225 533 764 062 867 857 067 136 321 933 279 232 Dec 02 22:22 UTC (GMT)
0 - 100 0001 1001 - 1010 1000 0001 0010 0001 0110 0000 0000 0000 0000 0000 0000 0001 = 111 167 576.000 000 014 901 161 193 847 656 25 Dec 02 22:20 UTC (GMT)
1 - 100 0000 1000 - 1000 0000 0100 0000 1000 0000 0000 1111 1000 0000 0001 1100 0000 = -768.503 908 097 794 919 740 408 658 981 323 242 187 5 Dec 02 22:20 UTC (GMT)
0 - 111 1111 1111 - 0000 0000 0000 0000 0011 1110 0010 0000 1101 1011 0110 0111 0010 = SNaN, Signalling Not a Number Dec 02 22:18 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from 64 bit double precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 64 bit double precision IEEE 754 binary floating point representation to base 10 decimal system:

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent.
    The last 52 bits contain the mantissa.
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10).
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation.
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10).
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted)

Example: convert the number 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 from 64 bit double precision IEEE 754 binary floating point system to base ten decimal (double):

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent: 100 0011 1101
    The last 52 bits contain the mantissa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1,024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1,024 + 32 + 16 + 8 + 4 + 1 =
    1,085(10)
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation:
    Exponent adjusted = 1,085 - 1,023 = 62
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0.5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 488 281 25 + 0 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0.5 + 0.000 488 281 25 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =
    (-1)1 × (1 + 0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 converted from 64 bit double precision IEEE 754 binary floating point representation to a decimal number (float) in decimal system (in base 10) = -6 919 868 872 153 800 704(10)