64 bit double precision IEEE 754 binary floating point number 1 - 110 1101 1010 - 1010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 converted to decimal base ten (double)

How to convert 64 bit double precision IEEE 754 binary floating point:
1 - 110 1101 1010 - 1010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000.

1. Identify the elements that make up the binary representation of the number:

First bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.


The next 11 bits contain the exponent:
110 1101 1010


The last 52 bits contain the mantissa:
1010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):

110 1101 1010(2) =


1 × 210 + 1 × 29 + 0 × 28 + 1 × 27 + 1 × 26 + 0 × 25 + 1 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 0 × 20 =


1,024 + 512 + 0 + 128 + 64 + 0 + 16 + 8 + 0 + 2 + 0 =


1,024 + 512 + 128 + 64 + 16 + 8 + 2 =


1,754(10)

3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1023, that is due to the 11 bit excess/bias notation:

Exponent adjusted = 1,754 - 1023 = 731

4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):

1010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000(2) =

1 × 2-1 + 0 × 2-2 + 1 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 0 × 2-26 + 0 × 2-27 + 0 × 2-28 + 0 × 2-29 + 0 × 2-30 + 0 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 0 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 0 × 2-45 + 0 × 2-46 + 0 × 2-47 + 0 × 2-48 + 0 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =


0.5 + 0 + 0.125 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 =


0.5 + 0.125 =


0.625(10)

Conclusion:

5. Put all the numbers into expression to calculate the double precision floating point decimal value:

(-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =


(-1)1 × (1 + 0.625) × 2731 =


-1.625 × 2731 =


-18 356 090 731 603 413 730 169 207 474 330 081 111 783 800 427 035 253 910 442 112 550 607 509 897 347 790 249 388 180 486 468 994 980 310 836 125 738 845 977 757 801 429 628 209 541 159 572 595 075 165 149 691 800 174 594 637 654 783 722 108 471 202 572 930 204 422 836 612 424 447 377 276 928

1 - 110 1101 1010 - 1010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
converted from
64 bit double precision IEEE 754 binary floating point
to
base ten decimal system (double) =


-18 356 090 731 603 413 730 169 207 474 330 081 111 783 800 427 035 253 910 442 112 550 607 509 897 347 790 249 388 180 486 468 994 980 310 836 125 738 845 977 757 801 429 628 209 541 159 572 595 075 165 149 691 800 174 594 637 654 783 722 108 471 202 572 930 204 422 836 612 424 447 377 276 928(10)

Convert 64 bit double precision IEEE 754 floating point standard binary numbers to base ten decimal system (double)

64 bit double precision IEEE 754 binary floating point standard representation of numbers requires three building blocks: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

Latest 64 bit double precision IEEE 754 floating point binary standard numbers converted to decimal base ten (double)

1 - 110 1101 1010 - 1010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -18 356 090 731 603 413 730 169 207 474 330 081 111 783 800 427 035 253 910 442 112 550 607 509 897 347 790 249 388 180 486 468 994 980 310 836 125 738 845 977 757 801 429 628 209 541 159 572 595 075 165 149 691 800 174 594 637 654 783 722 108 471 202 572 930 204 422 836 612 424 447 377 276 928 Jul 19 16:50 UTC (GMT)
0 - 100 0001 0000 - 0001 0010 1111 1100 0101 0000 0100 1000 0000 0000 0000 0000 0000 = 140 792.627 197 265 625 Jul 19 16:49 UTC (GMT)
1 - 110 1011 1110 - 1011 1110 1011 1110 1011 1110 1011 1110 1011 1110 1011 1110 1011 = -73 435 622 782 400 813 686 143 151 113 110 365 575 435 840 418 095 255 275 297 506 064 069 659 137 818 951 812 398 040 764 533 185 524 715 064 856 092 106 547 425 013 440 122 109 769 664 608 675 607 646 651 085 489 240 444 353 012 735 852 259 223 372 053 716 078 873 457 780 064 256 Jul 19 16:47 UTC (GMT)
0 - 000 0000 0000 - 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 0000 0000 = 0 Jul 19 16:45 UTC (GMT)
0 - 010 1010 1010 - 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 = 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 297 652 966 479 759 093 428 968 129 014 091 244 167 004 192 463 335 935 058 503 802 265 688 306 186 257 855 387 638 170 475 959 682 640 363 887 489 262 206 377 761 917 947 529 042 340 123 504 878 208 170 227 199 962 259 237 393 437 510 558 163 101 712 331 796 655 512 791 9 Jul 19 16:44 UTC (GMT)
0 - 000 0000 0000 - 1010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 0 Jul 19 16:44 UTC (GMT)
0 - 000 0000 0101 - 1100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 5 Jul 19 16:42 UTC (GMT)
0 - 100 0000 0000 - 1001 1000 1001 1000 1100 1100 0101 0001 0111 0000 0001 1011 1000 = 3.192 163 028 492 554 843 751 349 835 656 583 309 173 583 984 375 Jul 19 16:39 UTC (GMT)
0 - 100 0000 1000 - 0001 1011 1000 0000 0000 0000 0000 0000 0000 0000 0001 0101 1100 = 567.000 000 000 039 563 019 527 122 378 349 304 199 218 75 Jul 19 16:38 UTC (GMT)
0 - 100 0000 0010 - 1000 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 12.125 Jul 19 16:37 UTC (GMT)
1 - 100 0001 0011 - 1000 0010 0110 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -1 582 592 Jul 19 16:37 UTC (GMT)
0 - 011 1111 1100 - 0110 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 0.172 851 562 5 Jul 19 16:37 UTC (GMT)
0 - 011 1111 1110 - 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0100 = 0.600 000 000 000 000 088 817 841 970 012 523 233 890 533 447 265 625 Jul 19 16:36 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from 64 bit double precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 64 bit double precision IEEE 754 binary floating point representation to base 10 decimal system:

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent.
    The last 52 bits contain the mantissa.
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10).
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation.
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10).
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted)

Example: convert the number 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 from 64 bit double precision IEEE 754 binary floating point system to base ten decimal (double):

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent: 100 0011 1101
    The last 52 bits contain the mantissa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1,024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1,024 + 32 + 16 + 8 + 4 + 1 =
    1,085(10)
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation:
    Exponent adjusted = 1,085 - 1,023 = 62
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0.5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 488 281 25 + 0 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0.5 + 0.000 488 281 25 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =
    (-1)1 × (1 + 0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 converted from 64 bit double precision IEEE 754 binary floating point representation to a decimal number (float) in decimal system (in base 10) = -6 919 868 872 153 800 704(10)