64bit IEEE 754: Double Precision Floating Point Binary -> Double: 1 - 100 1010 1110 - 1001 0101 1000 0101 0101 0010 0000 0101 0101 0111 1110 0100 1111 The 64 Bit Double Precision IEEE 754 Binary Floating Point Standard Representation Number Converted and Written as a Base Ten Decimal System Number (Double)
1 - 100 1010 1110 - 1001 0101 1000 0101 0101 0010 0000 0101 0101 0111 1110 0100 1111: 64 bit double precision IEEE 754 binary floating point standard representation number converted to decimal system (base ten)
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
1
The next 11 bits contain the exponent:
100 1010 1110
The last 52 bits contain the mantissa:
1001 0101 1000 0101 0101 0010 0000 0101 0101 0111 1110 0100 1111
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
100 1010 1110(2) =
1 × 210 + 0 × 29 + 0 × 28 + 1 × 27 + 0 × 26 + 1 × 25 + 0 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 0 × 20 =
1,024 + 0 + 0 + 128 + 0 + 32 + 0 + 8 + 4 + 2 + 0 =
1,024 + 128 + 32 + 8 + 4 + 2 =
1,198(10)
3. Adjust the exponent.
Subtract the excess bits: 2(11 - 1) - 1 = 1023,
that is due to the 11 bit excess/bias notation.
The exponent, adjusted = 1,198 - 1023 = 175
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
1001 0101 1000 0101 0101 0010 0000 0101 0101 0111 1110 0100 1111(2) =
1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 1 × 2-4 + 0 × 2-5 + 1 × 2-6 + 0 × 2-7 + 1 × 2-8 + 1 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 1 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 1 × 2-20 + 0 × 2-21 + 0 × 2-22 + 1 × 2-23 + 0 × 2-24 + 0 × 2-25 + 0 × 2-26 + 0 × 2-27 + 0 × 2-28 + 0 × 2-29 + 1 × 2-30 + 0 × 2-31 + 1 × 2-32 + 0 × 2-33 + 1 × 2-34 + 0 × 2-35 + 1 × 2-36 + 0 × 2-37 + 1 × 2-38 + 1 × 2-39 + 1 × 2-40 + 1 × 2-41 + 1 × 2-42 + 1 × 2-43 + 0 × 2-44 + 0 × 2-45 + 1 × 2-46 + 0 × 2-47 + 0 × 2-48 + 1 × 2-49 + 1 × 2-50 + 1 × 2-51 + 1 × 2-52 =
0.5 + 0 + 0 + 0.062 5 + 0 + 0.015 625 + 0 + 0.003 906 25 + 0.001 953 125 + 0 + 0 + 0 + 0 + 0.000 061 035 156 25 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0.000 000 953 674 316 406 25 + 0 + 0 + 0.000 000 119 209 289 550 781 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 931 322 574 615 478 515 625 + 0 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0 + 0 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0.5 + 0.062 5 + 0.015 625 + 0.003 906 25 + 0.001 953 125 + 0.000 061 035 156 25 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 953 674 316 406 25 + 0.000 000 119 209 289 550 781 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0.584 065 557 770 276 688 742 683 290 911 372 750 997 543 334 960 937 5(10)
5. Put all the numbers into expression to calculate the double precision floating point decimal value:
(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =
(-1)1 × (1 + 0.584 065 557 770 276 688 742 683 290 911 372 750 997 543 334 960 937 5) × 2175 =
-1.584 065 557 770 276 688 742 683 290 911 372 750 997 543 334 960 937 5 × 2175 =
-75 861 668 866 318 315 232 706 670 085 993 742 749 048 559 097 610 240
1 - 100 1010 1110 - 1001 0101 1000 0101 0101 0010 0000 0101 0101 0111 1110 0100 1111 converted from a 64 bit double precision IEEE 754 binary floating point standard representation number to a decimal system number, written in base ten (double) = -75 861 668 866 318 315 232 706 670 085 993 742 749 048 559 097 610 240(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.
Convert 64 bit double precision IEEE 754 binary floating point standard numbers to base ten decimal system (double)
A number in 64 bit double precision IEEE 754 binary floating point standard representation...
... requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)