64 bit double precision IEEE 754 binary floating point number 1 - 100 0100 0110 - 1001 0011 1100 0011 1000 0000 0000 0000 0000 0000 0000 0000 0000 converted to decimal base ten (double)

How to convert 64 bit double precision IEEE 754 binary floating point:
1 - 100 0100 0110 - 1001 0011 1100 0011 1000 0000 0000 0000 0000 0000 0000 0000 0000.

1. Identify the elements that make up the binary representation of the number:

First bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.


The next 11 bits contain the exponent:
100 0100 0110


The last 52 bits contain the mantissa:
1001 0011 1100 0011 1000 0000 0000 0000 0000 0000 0000 0000 0000

2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):

100 0100 0110(2) =


1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 1 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 0 × 20 =


1,024 + 0 + 0 + 0 + 64 + 0 + 0 + 0 + 4 + 2 + 0 =


1,024 + 64 + 4 + 2 =


1,094(10)

3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1023, that is due to the 11 bit excess/bias notation:

Exponent adjusted = 1,094 - 1023 = 71

4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):

1001 0011 1100 0011 1000 0000 0000 0000 0000 0000 0000 0000 0000(2) =

1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 1 × 2-4 + 0 × 2-5 + 0 × 2-6 + 1 × 2-7 + 1 × 2-8 + 1 × 2-9 + 1 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 1 × 2-15 + 1 × 2-16 + 1 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 0 × 2-26 + 0 × 2-27 + 0 × 2-28 + 0 × 2-29 + 0 × 2-30 + 0 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 0 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 0 × 2-45 + 0 × 2-46 + 0 × 2-47 + 0 × 2-48 + 0 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =


0.5 + 0 + 0 + 0.062 5 + 0 + 0 + 0.007 812 5 + 0.003 906 25 + 0.001 953 125 + 0.000 976 562 5 + 0 + 0 + 0 + 0 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 =


0.5 + 0.062 5 + 0.007 812 5 + 0.003 906 25 + 0.001 953 125 + 0.000 976 562 5 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 =


0.577 201 843 261 718 75(10)

Conclusion:

5. Put all the numbers into expression to calculate the double precision floating point decimal value:

(-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =


(-1)1 × (1 + 0.577 201 843 261 718 75) × 271 =


-1.577 201 843 261 718 75 × 271 =


-3 724 062 560 669 682 106 368

1 - 100 0100 0110 - 1001 0011 1100 0011 1000 0000 0000 0000 0000 0000 0000 0000 0000
converted from
64 bit double precision IEEE 754 binary floating point
to
base ten decimal system (double) =


-3 724 062 560 669 682 106 368(10)

Convert 64 bit double precision IEEE 754 floating point standard binary numbers to base ten decimal system (double)

64 bit double precision IEEE 754 binary floating point standard representation of numbers requires three building blocks: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

Latest 64 bit double precision IEEE 754 floating point binary standard numbers converted to decimal base ten (double)

1 - 100 0100 0110 - 1001 0011 1100 0011 1000 0000 0000 0000 0000 0000 0000 0000 0000 = -3 724 062 560 669 682 106 368 Sep 23 01:22 UTC (GMT)
1 - 001 0000 0011 - 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 012 882 297 539 194 266 616 454 073 006 737 705 010 409 626 628 879 312 671 686 151 419 864 586 472 538 6 Sep 23 01:21 UTC (GMT)
0 - 011 1111 1001 - 0000 0100 0111 1011 1011 0101 0101 1000 0001 0001 0000 1110 0010 = 0.015 898 635 000 000 001 238 351 643 451 096 606 440 842 151 641 845 703 125 Sep 23 01:20 UTC (GMT)
0 - 011 1111 1000 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1001 = 0.007 812 500 000 000 015 612 511 283 791 263 849 707 320 332 527 160 644 531 25 Sep 23 01:17 UTC (GMT)
0 - 111 1111 1110 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 89 884 656 743 115 795 386 465 259 539 451 236 680 898 848 947 115 328 636 715 040 578 866 337 902 750 481 566 354 238 661 203 768 010 560 056 939 935 696 678 829 394 884 407 208 311 246 423 715 319 737 062 188 883 946 712 432 742 638 151 109 800 623 047 059 726 541 476 042 502 884 419 075 341 171 231 440 736 956 555 270 413 618 581 675 255 342 293 149 119 973 622 969 239 858 152 417 678 164 812 112 068 608 Sep 23 01:17 UTC (GMT)
0 - 001 0000 1010 - 0001 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 442 817 324 389 757 861 042 856 176 754 622 961 165 878 182 434 483 019 228 848 959 024 833 684 924 329 2 Sep 23 01:16 UTC (GMT)
0 - 101 1111 0000 - 0011 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 492 287 259 390 630 710 919 952 356 749 463 153 751 330 932 705 695 290 605 885 615 905 082 621 724 921 759 230 491 791 228 700 429 884 020 067 730 121 338 804 120 563 972 721 045 439 660 735 594 496 Sep 23 01:15 UTC (GMT)
0 - 010 1011 0010 - 0101 0110 0100 1100 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 076 414 260 195 375 970 567 020 172 707 290 968 013 650 489 064 279 328 220 336 187 279 015 344 710 720 561 684 149 291 427 279 018 107 680 215 978 147 475 697 275 559 691 233 989 892 825 067 775 029 705 119 286 311 387 874 322 204 018 897 223 145 668 243 521 760 271 342 235 4 Sep 23 01:13 UTC (GMT)
0 - 011 1111 1110 - 1110 0111 1000 1110 0110 1101 1010 1000 0110 0111 1010 1000 0000 = 0.952 258 517 081 489 230 804 436 374 455 690 383 911 132 812 5 Sep 23 01:11 UTC (GMT)
0 - 101 0111 1000 - 1110 0111 1110 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 586 647 148 836 241 349 660 969 137 233 202 074 742 226 495 256 907 037 143 715 626 360 973 556 801 428 272 309 684 300 204 528 143 867 753 101 524 992 Sep 23 01:10 UTC (GMT)
0 - 100 0000 0000 - 0011 1001 1010 1100 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 2.450 561 523 437 5 Sep 23 01:07 UTC (GMT)
0 - 011 1111 1111 - 0011 0011 0011 0011 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 1.199 996 948 242 187 5 Sep 23 01:06 UTC (GMT)
0 - 100 0000 0111 - 1100 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 456 Sep 23 01:02 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from 64 bit double precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 64 bit double precision IEEE 754 binary floating point representation to base 10 decimal system:

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent.
    The last 52 bits contain the mantissa.
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10).
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation.
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10).
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted)

Example: convert the number 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 from 64 bit double precision IEEE 754 binary floating point system to base ten decimal (double):

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent: 100 0011 1101
    The last 52 bits contain the mantissa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1,024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1,024 + 32 + 16 + 8 + 4 + 1 =
    1,085(10)
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation:
    Exponent adjusted = 1,085 - 1,023 = 62
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0.5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 488 281 25 + 0 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0.5 + 0.000 488 281 25 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =
    (-1)1 × (1 + 0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 converted from 64 bit double precision IEEE 754 binary floating point representation to a decimal number (float) in decimal system (in base 10) = -6 919 868 872 153 800 704(10)