64 bit double precision IEEE 754 binary floating point number 1 - 100 0000 0101 - 1011 0001 1100 0010 1000 1111 0100 1110 0001 0100 0111 1010 0111 converted to decimal base ten (double)

How to convert 64 bit double precision IEEE 754 binary floating point:
1 - 100 0000 0101 - 1011 0001 1100 0010 1000 1111 0100 1110 0001 0100 0111 1010 0111
to decimal system (base ten)

1. Identify the elements that make up the binary representation of the number:

First bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.


The next 11 bits contain the exponent:
100 0000 0101


The last 52 bits contain the mantissa:
1011 0001 1100 0010 1000 1111 0100 1110 0001 0100 0111 1010 0111

2. Convert the exponent from binary (base 2) to decimal (base 10):

The exponent is allways a positive integer.

100 0000 0101(2) =


1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =


1,024 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 4 + 0 + 1 =


1,024 + 4 + 1 =


1,029(10)

3. Adjust the exponent.

Subtract the excess bits: 2(11 - 1) - 1 = 1023, that is due to the 11 bit excess/bias notation:

Exponent adjusted = 1,029 - 1023 = 6


4. Convert the mantissa from binary (base 2) to decimal (base 10):

Mantissa represents the number's fractional part (the excess beyond the number's integer part, comma delimited)

1011 0001 1100 0010 1000 1111 0100 1110 0001 0100 0111 1010 0111(2) =

1 × 2-1 + 0 × 2-2 + 1 × 2-3 + 1 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 1 × 2-8 + 1 × 2-9 + 1 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 1 × 2-15 + 0 × 2-16 + 1 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 1 × 2-21 + 1 × 2-22 + 1 × 2-23 + 1 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 1 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 1 × 2-42 + 1 × 2-43 + 1 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 0 × 2-49 + 1 × 2-50 + 1 × 2-51 + 1 × 2-52 =


0.5 + 0 + 0.125 + 0.062 5 + 0 + 0 + 0 + 0.003 906 25 + 0.001 953 125 + 0.000 976 562 5 + 0 + 0 + 0 + 0 + 0.000 030 517 578 125 + 0 + 0.000 007 629 394 531 25 + 0 + 0 + 0 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 + 0.000 000 059 604 644 775 390 625 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =


0.5 + 0.125 + 0.062 5 + 0.003 906 25 + 0.001 953 125 + 0.000 976 562 5 + 0.000 030 517 578 125 + 0.000 007 629 394 531 25 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 + 0.000 000 059 604 644 775 390 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =


0.694 374 996 721 742 965 277 712 755 778 338 760 137 557 983 398 437 5(10)

5. Put all the numbers into expression to calculate the double precision floating point decimal value:

(-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =


(-1)1 × (1 + 0.694 374 996 721 742 965 277 712 755 778 338 760 137 557 983 398 437 5) × 26 =


-1.694 374 996 721 742 965 277 712 755 778 338 760 137 557 983 398 437 5 × 26 =


-108.439 999 790 191 549 777 773 616 369 813 680 648 803 710 937 5

Conclusion:

1 - 100 0000 0101 - 1011 0001 1100 0010 1000 1111 0100 1110 0001 0100 0111 1010 0111
converted from
64 bit double precision IEEE 754 binary floating point
to
base ten decimal system (double) =

-108.439 999 790 191 549 777 773 616 369 813 680 648 803 710 937 5(10)

More operations of this kind:

1 - 100 0000 0101 - 1011 0001 1100 0010 1000 1111 0100 1110 0001 0100 0111 1010 0110 = ?

1 - 100 0000 0101 - 1011 0001 1100 0010 1000 1111 0100 1110 0001 0100 0111 1010 1000 = ?


Convert 64 bit double precision IEEE 754 floating point standard binary numbers to base ten decimal system (double)

64 bit double precision IEEE 754 binary floating point standard representation of numbers requires three building blocks: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

Latest 64 bit double precision IEEE 754 floating point binary standard numbers converted to decimal base ten (double)

1 - 100 0000 0101 - 1011 0001 1100 0010 1000 1111 0100 1110 0001 0100 0111 1010 0111 = -108.439 999 790 191 549 777 773 616 369 813 680 648 803 710 937 5 Oct 21 08:19 UTC (GMT)
0 - 111 0010 0110 - 0101 0111 1000 0011 0110 0011 0110 0011 0010 0011 0110 0011 0010 = 1 145 275 605 363 533 534 633 346 908 969 690 111 425 630 251 585 450 318 594 200 771 073 654 102 768 858 019 827 863 331 322 556 748 308 264 806 625 036 578 470 575 460 734 583 755 756 215 173 002 710 937 948 339 916 518 722 093 079 430 442 530 337 986 973 909 685 189 055 989 027 265 461 692 604 301 542 653 019 002 241 024 Oct 21 08:16 UTC (GMT)
1 - 010 1010 1010 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -0 Oct 21 08:12 UTC (GMT)
0 - 100 0001 1001 - 0000 1001 0111 1100 0110 1000 1111 0010 1010 0101 0101 1000 1110 = 69 595 555.791 341 990 232 467 651 367 187 5 Oct 21 08:09 UTC (GMT)
1 - 100 0000 0010 - 0101 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 = -10.625 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 Oct 21 08:08 UTC (GMT)
1 - 010 0000 1101 - 1100 1100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -0 Oct 21 08:05 UTC (GMT)
0 - 100 0001 1011 - 1000 0010 1101 1010 1101 1010 1101 1000 1111 0000 0011 0111 1100 = 405 646 765.558 646 917 343 139 648 437 5 Oct 21 08:04 UTC (GMT)
0 - 100 0000 0111 - 1001 1110 1110 0110 1110 0001 0100 0111 1010 1110 0000 0000 0001 = 414.901 874 999 981 430 391 926 551 237 702 369 689 941 406 25 Oct 21 08:01 UTC (GMT)
0 - 100 0001 1110 - 0001 1100 0111 0100 1010 1110 0000 0000 0000 0000 0000 0000 0000 = 2 386 188 032 Oct 21 08:01 UTC (GMT)
1 - 100 0000 1000 - 1000 0000 0100 0000 1000 0000 0000 1111 1000 0000 0001 1100 0001 = -768.503 908 097 795 033 427 246 380 597 352 981 567 382 812 5 Oct 21 08:00 UTC (GMT)
0 - 100 0000 0000 - 0011 1001 1010 1011 1111 1111 1111 1111 1111 1111 1111 1111 1111 = 2.450 561 523 437 499 555 910 790 149 937 383 830 547 332 763 671 875 Oct 21 07:59 UTC (GMT)
1 - 100 0011 1100 - 1011 0000 1011 1010 0001 0110 1000 0000 0000 0000 0000 0000 0000 = -3 897 657 463 633 084 416 Oct 21 07:59 UTC (GMT)
1 - 101 1000 0000 - 0101 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 = -108 355 517 040 084 800 335 761 562 011 299 542 983 951 466 052 809 055 511 502 359 715 976 243 465 452 477 901 765 238 605 926 132 224 112 810 788 913 152 Oct 21 07:58 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from 64 bit double precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 64 bit double precision IEEE 754 binary floating point representation to base 10 decimal system:

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent.
    The last 52 bits contain the mantissa.
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10).
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation.
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10).
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted)

Example: convert the number 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 from 64 bit double precision IEEE 754 binary floating point system to base ten decimal (double):

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent: 100 0011 1101
    The last 52 bits contain the mantissa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1,024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1,024 + 32 + 16 + 8 + 4 + 1 =
    1,085(10)
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation:
    Exponent adjusted = 1,085 - 1,023 = 62
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0.5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 488 281 25 + 0 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0.5 + 0.000 488 281 25 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =
    (-1)1 × (1 + 0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 converted from 64 bit double precision IEEE 754 binary floating point representation to a decimal number (float) in decimal system (in base 10) = -6 919 868 872 153 800 704(10)