64 bit double precision IEEE 754 binary floating point number 1 - 100 0000 0100 - 1101 0110 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 converted to decimal base ten (double)

How to convert 64 bit double precision IEEE 754 binary floating point:
1 - 100 0000 0100 - 1101 0110 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
to decimal system (base ten)

1. Identify the elements that make up the binary representation of the number:

First bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.


The next 11 bits contain the exponent:
100 0000 0100


The last 52 bits contain the mantissa:
1101 0110 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

2. Convert the exponent from binary (base 2) to decimal (base 10):

The exponent is allways a positive integer.

100 0000 0100(2) =


1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 0 × 20 =


1,024 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 4 + 0 + 0 =


1,024 + 4 =


1,028(10)

3. Adjust the exponent.

Subtract the excess bits: 2(11 - 1) - 1 = 1023, that is due to the 11 bit excess/bias notation:

Exponent adjusted = 1,028 - 1023 = 5


4. Convert the mantissa from binary (base 2) to decimal (base 10):

Mantissa represents the number's fractional part (the excess beyond the number's integer part, comma delimited)

1101 0110 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000(2) =

1 × 2-1 + 1 × 2-2 + 0 × 2-3 + 1 × 2-4 + 0 × 2-5 + 1 × 2-6 + 1 × 2-7 + 0 × 2-8 + 0 × 2-9 + 1 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 0 × 2-26 + 0 × 2-27 + 0 × 2-28 + 0 × 2-29 + 0 × 2-30 + 0 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 0 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 0 × 2-45 + 0 × 2-46 + 0 × 2-47 + 0 × 2-48 + 0 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =


0.5 + 0.25 + 0 + 0.062 5 + 0 + 0.015 625 + 0.007 812 5 + 0 + 0 + 0.000 976 562 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 =


0.5 + 0.25 + 0.062 5 + 0.015 625 + 0.007 812 5 + 0.000 976 562 5 =


0.836 914 062 5(10)

5. Put all the numbers into expression to calculate the double precision floating point decimal value:

(-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =


(-1)1 × (1 + 0.836 914 062 5) × 25 =


-1.836 914 062 5 × 25 =


-58.781 25

Conclusion:

1 - 100 0000 0100 - 1101 0110 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
converted from
64 bit double precision IEEE 754 binary floating point
to
base ten decimal system (double) =

-58.781 25(10)

More operations of this kind:

1 - 100 0000 0100 - 1101 0110 0011 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 = ?

1 - 100 0000 0100 - 1101 0110 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 = ?


Convert 64 bit double precision IEEE 754 floating point standard binary numbers to base ten decimal system (double)

64 bit double precision IEEE 754 binary floating point standard representation of numbers requires three building blocks: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

Latest 64 bit double precision IEEE 754 floating point binary standard numbers converted to decimal base ten (double)

1 - 100 0000 0100 - 1101 0110 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -58.781 25 Sep 29 13:31 UTC (GMT)
1 - 000 0011 1000 - 0000 1110 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -0 Sep 29 13:31 UTC (GMT)
0 - 011 1101 1000 - 0101 1100 0010 1000 1111 0110 0000 0000 0000 0000 0000 0000 0000 = 0.000 000 000 002 473 825 614 843 216 946 781 012 666 178 867 220 878 601 074 218 75 Sep 29 13:29 UTC (GMT)
0 - 100 0000 0001 - 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 4.5 Sep 29 13:28 UTC (GMT)
1 - 100 0001 0000 - 1000 0010 1010 1010 0101 1111 1010 1010 1010 1010 0010 0001 1101 = -197 972.747 395 769 605 645 909 905 433 654 785 156 25 Sep 29 13:27 UTC (GMT)
0 - 011 1111 1100 - 0000 0100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 = 0.127 343 749 999 999 977 795 539 507 496 869 191 527 366 638 183 593 75 Sep 29 13:21 UTC (GMT)
0 - 100 0000 0000 - 1001 0110 1110 1110 1011 0111 0100 0100 0101 0101 1010 0001 1100 = 3.179 160 030 714 468 732 071 509 293 746 203 184 127 807 617 187 5 Sep 29 13:21 UTC (GMT)
0 - 100 0001 0101 - 0000 0000 0000 0000 0000 0001 1100 1100 1100 1100 1100 1100 1100 = 4 194 304.449 999 999 254 941 940 307 617 187 5 Sep 29 13:17 UTC (GMT)
0 - 001 0000 0011 - 0111 0101 1110 0110 0110 0111 0011 0101 0000 0000 0000 0000 0000 = 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 015 052 160 026 692 079 701 002 824 353 330 632 500 433 781 380 350 910 208 622 926 515 813 302 761 017 3 Sep 29 13:04 UTC (GMT)
1 - 110 0000 0000 - 0101 1011 1011 1011 1011 1010 0100 0101 1010 0000 0101 1010 1101 = -36 424 542 540 608 412 508 803 275 080 615 451 256 010 213 941 739 364 267 135 379 153 817 799 605 087 993 808 827 196 303 098 191 056 983 562 904 028 657 640 433 951 555 315 576 570 808 016 503 375 396 864 Sep 29 13:01 UTC (GMT)
0 - 011 1111 1111 - 0011 1110 1011 1000 0101 0001 1110 1011 1000 0101 0001 1110 1101 = 1.245 000 000 000 000 328 626 015 289 046 335 965 394 973 754 882 812 5 Sep 29 12:55 UTC (GMT)
0 - 011 1111 1011 - 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 0.070 312 5 Sep 29 12:52 UTC (GMT)
1 - 100 0011 0101 - 0010 1010 1010 1111 1010 1010 0010 0101 0111 0100 0101 0101 0110 = -21 018 172 091 864 408 Sep 29 12:50 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from 64 bit double precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 64 bit double precision IEEE 754 binary floating point representation to base 10 decimal system:

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent.
    The last 52 bits contain the mantissa.
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10).
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation.
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10).
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted)

Example: convert the number 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 from 64 bit double precision IEEE 754 binary floating point system to base ten decimal (double):

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent: 100 0011 1101
    The last 52 bits contain the mantissa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1,024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1,024 + 32 + 16 + 8 + 4 + 1 =
    1,085(10)
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation:
    Exponent adjusted = 1,085 - 1,023 = 62
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0.5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 488 281 25 + 0 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0.5 + 0.000 488 281 25 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =
    (-1)1 × (1 + 0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 converted from 64 bit double precision IEEE 754 binary floating point representation to a decimal number (float) in decimal system (in base 10) = -6 919 868 872 153 800 704(10)