64bit IEEE 754: Double Precision Floating Point Binary -> Double: 1 - 011 1111 1101 - 1000 0111 0010 0010 0001 1001 0001 0000 0010 1101 0110 0000 0001 The 64 Bit Double Precision IEEE 754 Binary Floating Point Standard Representation Number Converted and Written as a Base Ten Decimal System Number (Double)
1 - 011 1111 1101 - 1000 0111 0010 0010 0001 1001 0001 0000 0010 1101 0110 0000 0001: 64 bit double precision IEEE 754 binary floating point standard representation number converted to decimal system (base ten)
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
1
The next 11 bits contain the exponent:
011 1111 1101
The last 52 bits contain the mantissa:
1000 0111 0010 0010 0001 1001 0001 0000 0010 1101 0110 0000 0001
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
011 1111 1101(2) =
0 × 210 + 1 × 29 + 1 × 28 + 1 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
0 + 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 0 + 1 =
512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 1 =
1,021(10)
3. Adjust the exponent.
Subtract the excess bits: 2(11 - 1) - 1 = 1023,
that is due to the 11 bit excess/bias notation.
The exponent, adjusted = 1,021 - 1023 = -2
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
1000 0111 0010 0010 0001 1001 0001 0000 0010 1101 0110 0000 0001(2) =
1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 1 × 2-6 + 1 × 2-7 + 1 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 1 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 1 × 2-20 + 1 × 2-21 + 0 × 2-22 + 0 × 2-23 + 1 × 2-24 + 0 × 2-25 + 0 × 2-26 + 0 × 2-27 + 1 × 2-28 + 0 × 2-29 + 0 × 2-30 + 0 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 1 × 2-35 + 0 × 2-36 + 1 × 2-37 + 1 × 2-38 + 0 × 2-39 + 1 × 2-40 + 0 × 2-41 + 1 × 2-42 + 1 × 2-43 + 0 × 2-44 + 0 × 2-45 + 0 × 2-46 + 0 × 2-47 + 0 × 2-48 + 0 × 2-49 + 0 × 2-50 + 0 × 2-51 + 1 × 2-52 =
0.5 + 0 + 0 + 0 + 0 + 0.015 625 + 0.007 812 5 + 0.003 906 25 + 0 + 0 + 0.000 488 281 25 + 0 + 0 + 0 + 0.000 030 517 578 125 + 0 + 0 + 0 + 0 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0 + 0 + 0.000 000 059 604 644 775 390 625 + 0 + 0 + 0 + 0.000 000 003 725 290 298 461 914 062 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0.5 + 0.015 625 + 0.007 812 5 + 0.003 906 25 + 0.000 488 281 25 + 0.000 030 517 578 125 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 059 604 644 775 390 625 + 0.000 000 003 725 290 298 461 914 062 5 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0.527 864 042 710 803 227 365 090 606 326 702 982 187 271 118 164 062 5(10)
5. Put all the numbers into expression to calculate the double precision floating point decimal value:
(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =
(-1)1 × (1 + 0.527 864 042 710 803 227 365 090 606 326 702 982 187 271 118 164 062 5) × 2-2 =
-1.527 864 042 710 803 227 365 090 606 326 702 982 187 271 118 164 062 5 × 2-2 =
-0.381 966 010 677 700 806 841 272 651 581 675 745 546 817 779 541 015 625
1 - 011 1111 1101 - 1000 0111 0010 0010 0001 1001 0001 0000 0010 1101 0110 0000 0001 converted from a 64 bit double precision IEEE 754 binary floating point standard representation number to a decimal system number, written in base ten (double) = -0.381 966 010 677 700 806 841 272 651 581 675 745 546 817 779 541 015 625(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.
Convert 64 bit double precision IEEE 754 binary floating point standard numbers to base ten decimal system (double)
A number in 64 bit double precision IEEE 754 binary floating point standard representation...
... requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)