64 bit double precision IEEE 754 binary floating point number 1 - 011 1111 1001 - 0101 1100 1010 1111 1111 1101 0001 1101 1100 1101 0111 0000 0110 converted to decimal base ten (double)

64 bit double precision IEEE 754 binary floating point 1 - 011 1111 1001 - 0101 1100 1010 1111 1111 1101 0001 1101 1100 1101 0111 0000 0110 to decimal system (base ten) = ?

1. Identify the elements that make up the binary representation of the number:

First bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.


The next 11 bits contain the exponent:
011 1111 1001


The last 52 bits contain the mantissa:
0101 1100 1010 1111 1111 1101 0001 1101 1100 1101 0111 0000 0110

2. Convert the exponent from binary (base 2) to decimal (base 10):

The exponent is allways a positive integer.

011 1111 1001(2) =


0 × 210 + 1 × 29 + 1 × 28 + 1 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 0 × 22 + 0 × 21 + 1 × 20 =


0 + 512 + 256 + 128 + 64 + 32 + 16 + 8 + 0 + 0 + 1 =


512 + 256 + 128 + 64 + 32 + 16 + 8 + 1 =


1,017(10)

3. Adjust the exponent.

Subtract the excess bits: 2(11 - 1) - 1 = 1023, that is due to the 11 bit excess/bias notation:

Exponent adjusted = 1,017 - 1023 = -6


4. Convert the mantissa from binary (base 2) to decimal (base 10):

Mantissa represents the number's fractional part (the excess beyond the number's integer part, comma delimited)

0101 1100 1010 1111 1111 1101 0001 1101 1100 1101 0111 0000 0110(2) =

0 × 2-1 + 1 × 2-2 + 0 × 2-3 + 1 × 2-4 + 1 × 2-5 + 1 × 2-6 + 0 × 2-7 + 0 × 2-8 + 1 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 1 × 2-13 + 1 × 2-14 + 1 × 2-15 + 1 × 2-16 + 1 × 2-17 + 1 × 2-18 + 1 × 2-19 + 1 × 2-20 + 1 × 2-21 + 1 × 2-22 + 0 × 2-23 + 1 × 2-24 + 0 × 2-25 + 0 × 2-26 + 0 × 2-27 + 1 × 2-28 + 1 × 2-29 + 1 × 2-30 + 0 × 2-31 + 1 × 2-32 + 1 × 2-33 + 1 × 2-34 + 0 × 2-35 + 0 × 2-36 + 1 × 2-37 + 1 × 2-38 + 0 × 2-39 + 1 × 2-40 + 0 × 2-41 + 1 × 2-42 + 1 × 2-43 + 1 × 2-44 + 0 × 2-45 + 0 × 2-46 + 0 × 2-47 + 0 × 2-48 + 0 × 2-49 + 1 × 2-50 + 1 × 2-51 + 0 × 2-52 =


0 + 0.25 + 0 + 0.062 5 + 0.031 25 + 0.015 625 + 0 + 0 + 0.001 953 125 + 0 + 0.000 488 281 25 + 0 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 + 0 + 0.000 000 059 604 644 775 390 625 + 0 + 0 + 0 + 0.000 000 003 725 290 298 461 914 062 5 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0.000 000 000 116 415 321 826 934 814 453 125 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0 + 0 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0 =


0.25 + 0.062 5 + 0.031 25 + 0.015 625 + 0.001 953 125 + 0.000 488 281 25 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 + 0.000 000 059 604 644 775 390 625 + 0.000 000 003 725 290 298 461 914 062 5 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0.000 000 000 116 415 321 826 934 814 453 125 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 =


0.362 060 374 999 999 989 853 449 733 345 769 345 760 345 458 984 375(10)

5. Put all the numbers into expression to calculate the double precision floating point decimal value:

(-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =


(-1)1 × (1 + 0.362 060 374 999 999 989 853 449 733 345 769 345 760 345 458 984 375) × 2-6 =


-1.362 060 374 999 999 989 853 449 733 345 769 345 760 345 458 984 375 × 2-6 =


-0.021 282 193 359 374 999 841 460 152 083 527 646 027 505 397 796 630 859 375

1 - 011 1111 1001 - 0101 1100 1010 1111 1111 1101 0001 1101 1100 1101 0111 0000 0110 converted from 64 bit double precision IEEE 754 binary floating point to base ten decimal system (double) =
-0.021 282 193 359 374 999 841 460 152 083 527 646 027 505 397 796 630 859 375(10)

More operations of this kind:

1 - 011 1111 1001 - 0101 1100 1010 1111 1111 1101 0001 1101 1100 1101 0111 0000 0101 = ?

1 - 011 1111 1001 - 0101 1100 1010 1111 1111 1101 0001 1101 1100 1101 0111 0000 0111 = ?


Convert 64 bit double precision IEEE 754 floating point standard binary numbers to base ten decimal system (double)

64 bit double precision IEEE 754 binary floating point standard representation of numbers requires three building blocks: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

Latest 64 bit double precision IEEE 754 floating point binary standard numbers converted to decimal base ten (double)

1 - 011 1111 1001 - 0101 1100 1010 1111 1111 1101 0001 1101 1100 1101 0111 0000 0110 = ? Mar 09 09:34 UTC (GMT)
0 - 100 0000 0100 - 1111 1100 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 = ? Mar 09 09:34 UTC (GMT)
0 - 011 1111 1001 - 0000 0100 0111 1011 1011 0101 0101 1000 0001 0001 0000 1101 1011 = ? Mar 09 09:34 UTC (GMT)
0 - 011 1100 0000 - 0111 1010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 = ? Mar 09 09:33 UTC (GMT)
0 - 100 0000 0010 - 1111 0000 1111 0101 1100 0010 1000 1111 0101 1100 0010 1000 1010 = ? Mar 09 09:33 UTC (GMT)
0 - 100 0001 0011 - 0000 1101 1111 1010 1110 0111 0110 0010 1101 1111 0100 1010 1100 = ? Mar 09 09:33 UTC (GMT)
0 - 011 1111 1111 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1111 = ? Mar 09 09:32 UTC (GMT)
0 - 001 0000 0111 - 0100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1010 = ? Mar 09 09:32 UTC (GMT)
0 - 000 0001 0000 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010 = ? Mar 09 09:32 UTC (GMT)
0 - 011 1111 1101 - 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = ? Mar 09 09:32 UTC (GMT)
1 - 100 0000 0001 - 1000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 = ? Mar 09 09:32 UTC (GMT)
0 - 100 0000 0100 - 1111 0011 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1110 = ? Mar 09 09:32 UTC (GMT)
0 - 000 0100 0010 - 0111 1011 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = ? Mar 09 09:32 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from 64 bit double precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 64 bit double precision IEEE 754 binary floating point representation to base 10 decimal system:

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent.
    The last 52 bits contain the mantissa.
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10).
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation.
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10).
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted)

Example: convert the number 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 from 64 bit double precision IEEE 754 binary floating point system to base ten decimal (double):

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent: 100 0011 1101
    The last 52 bits contain the mantissa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1,024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1,024 + 32 + 16 + 8 + 4 + 1 =
    1,085(10)
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation:
    Exponent adjusted = 1,085 - 1,023 = 62
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0.5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 488 281 25 + 0 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0.5 + 0.000 488 281 25 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =
    (-1)1 × (1 + 0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 converted from 64 bit double precision IEEE 754 binary floating point representation to a decimal number (float) in decimal system (in base 10) = -6 919 868 872 153 800 704(10)