Convert 1 - 011 1110 1101 - 0110 1011 1100 0011 0011 1110 0010 0010 0010 0010 0101 0110 0100, 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, to Decimal
1 - 011 1110 1101 - 0110 1011 1100 0011 0011 1110 0010 0010 0010 0010 0101 0110 0100: 64 bit double precision IEEE 754 binary floating point representation standard converted to decimal
What are the steps to convert
1 - 011 1110 1101 - 0110 1011 1100 0011 0011 1110 0010 0010 0010 0010 0101 0110 0100, a 64 bit double precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
1
The next 11 bits contain the exponent:
011 1110 1101
The last 52 bits contain the mantissa:
0110 1011 1100 0011 0011 1110 0010 0010 0010 0010 0101 0110 0100
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
011 1110 1101(2) =
0 × 210 + 1 × 29 + 1 × 28 + 1 × 27 + 1 × 26 + 1 × 25 + 0 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
0 + 512 + 256 + 128 + 64 + 32 + 0 + 8 + 4 + 0 + 1 =
512 + 256 + 128 + 64 + 32 + 8 + 4 + 1 =
1,005(10)
3. Adjust the exponent.
Subtract the excess bits: 2(11 - 1) - 1 = 1023,
that is due to the 11 bit excess/bias notation.
The exponent, adjusted = 1,005 - 1023 = -18
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
0110 1011 1100 0011 0011 1110 0010 0010 0010 0010 0101 0110 0100(2) =
0 × 2-1 + 1 × 2-2 + 1 × 2-3 + 0 × 2-4 + 1 × 2-5 + 0 × 2-6 + 1 × 2-7 + 1 × 2-8 + 1 × 2-9 + 1 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 1 × 2-15 + 1 × 2-16 + 0 × 2-17 + 0 × 2-18 + 1 × 2-19 + 1 × 2-20 + 1 × 2-21 + 1 × 2-22 + 1 × 2-23 + 0 × 2-24 + 0 × 2-25 + 0 × 2-26 + 1 × 2-27 + 0 × 2-28 + 0 × 2-29 + 0 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 1 × 2-35 + 0 × 2-36 + 0 × 2-37 + 0 × 2-38 + 1 × 2-39 + 0 × 2-40 + 0 × 2-41 + 1 × 2-42 + 0 × 2-43 + 1 × 2-44 + 0 × 2-45 + 1 × 2-46 + 1 × 2-47 + 0 × 2-48 + 0 × 2-49 + 1 × 2-50 + 0 × 2-51 + 0 × 2-52 =
0 + 0.25 + 0.125 + 0 + 0.031 25 + 0 + 0.007 812 5 + 0.003 906 25 + 0.001 953 125 + 0.000 976 562 5 + 0 + 0 + 0 + 0 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0 + 0 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 + 0 + 0 + 0 + 0.000 000 007 450 580 596 923 828 125 + 0 + 0 + 0 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0 + 0 + 0 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0 + 0 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0 + 0 =
0.25 + 0.125 + 0.031 25 + 0.007 812 5 + 0.003 906 25 + 0.001 953 125 + 0.000 976 562 5 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 + 0.000 000 007 450 580 596 923 828 125 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 =
0.420 947 917 302 634 699 865 393 486 106 768 250 465 393 066 406 25(10)
5. Put all the numbers into expression to calculate the double precision floating point decimal value:
(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =
(-1)1 × (1 + 0.420 947 917 302 634 699 865 393 486 106 768 250 465 393 066 406 25) × 2-18 =
-1.420 947 917 302 634 699 865 393 486 106 768 250 465 393 066 406 25 × 2-18 = ...
= -0.000 005 420 486 134 729 899 215 184 759 087 016 175 271 855 900 064 110 755 920 410 156 25
1 - 011 1110 1101 - 0110 1011 1100 0011 0011 1110 0010 0010 0010 0010 0101 0110 0100, a 64 bit double precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (double) = -0.000 005 420 486 134 729 899 215 184 759 087 016 175 271 855 900 064 110 755 920 410 156 25(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.