Binary ↘ Double: The 64 Bit Double Precision IEEE 754 Binary Floating Point Standard Representation Number 1 - 011 1011 1111 - 1100 1101 0101 0001 0111 1001 1000 0110 0101 0100 0101 0011 0011 Converted and Written as a Base Ten Decimal System Number (as a Double)
1 - 011 1011 1111 - 1100 1101 0101 0001 0111 1001 1000 0110 0101 0100 0101 0011 0011: 64 bit double precision IEEE 754 binary floating point standard representation number converted to decimal system (base ten)
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
1
The next 11 bits contain the exponent:
011 1011 1111
The last 52 bits contain the mantissa:
1100 1101 0101 0001 0111 1001 1000 0110 0101 0100 0101 0011 0011
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
011 1011 1111(2) =
0 × 210 + 1 × 29 + 1 × 28 + 1 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 1 × 20 =
0 + 512 + 256 + 128 + 0 + 32 + 16 + 8 + 4 + 2 + 1 =
512 + 256 + 128 + 32 + 16 + 8 + 4 + 2 + 1 =
959(10)
3. Adjust the exponent.
Subtract the excess bits: 2(11 - 1) - 1 = 1023,
that is due to the 11 bit excess/bias notation.
The exponent, adjusted = 959 - 1023 = -64
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
1100 1101 0101 0001 0111 1001 1000 0110 0101 0100 0101 0011 0011(2) =
1 × 2-1 + 1 × 2-2 + 0 × 2-3 + 0 × 2-4 + 1 × 2-5 + 1 × 2-6 + 0 × 2-7 + 1 × 2-8 + 0 × 2-9 + 1 × 2-10 + 0 × 2-11 + 1 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 1 × 2-19 + 1 × 2-20 + 1 × 2-21 + 0 × 2-22 + 0 × 2-23 + 1 × 2-24 + 1 × 2-25 + 0 × 2-26 + 0 × 2-27 + 0 × 2-28 + 0 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 1 × 2-34 + 0 × 2-35 + 1 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 1 × 2-42 + 0 × 2-43 + 1 × 2-44 + 0 × 2-45 + 0 × 2-46 + 1 × 2-47 + 1 × 2-48 + 0 × 2-49 + 0 × 2-50 + 1 × 2-51 + 1 × 2-52 =
0.5 + 0.25 + 0 + 0 + 0.031 25 + 0.015 625 + 0 + 0.003 906 25 + 0 + 0.000 976 562 5 + 0 + 0.000 244 140 625 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0 + 0 + 0.000 000 059 604 644 775 390 625 + 0.000 000 029 802 322 387 695 312 5 + 0 + 0 + 0 + 0 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0 + 0 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0.5 + 0.25 + 0.031 25 + 0.015 625 + 0.003 906 25 + 0.000 976 562 5 + 0.000 244 140 625 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 059 604 644 775 390 625 + 0.000 000 029 802 322 387 695 312 5 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0.802 024 455 352 079 668 202 236 462 093 424 052 000 045 776 367 187 5(10)
5. Put all the numbers into expression to calculate the double precision floating point decimal value:
(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =
(-1)1 × (1 + 0.802 024 455 352 079 668 202 236 462 093 424 052 000 045 776 367 187 5) × 2-64 =
-1.802 024 455 352 079 668 202 236 462 093 424 052 000 045 776 367 187 5 × 2-64 =
-0.000 000 000 000 000 000 097 687 941 468 236 633 212 260 197 346 061 242 661 479 901 066 211 658 676 105 566 989 633 643 970 591 947 436 332 702 636 718 75
1 - 011 1011 1111 - 1100 1101 0101 0001 0111 1001 1000 0110 0101 0100 0101 0011 0011 converted from a 64 bit double precision IEEE 754 binary floating point standard representation number to a decimal system number, written in base ten (double) = -0.000 000 000 000 000 000 097 687 941 468 236 633 212 260 197 346 061 242 661 479 901 066 211 658 676 105 566 989 633 643 970 591 947 436 332 702 636 718 75(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.
More operations with 64 bit double precision IEEE 754 binary floating point standard representation numbers: