64 bit double precision IEEE 754 binary floating point number 1 - 001 1100 0010 - 0010 0101 1100 0010 0001 0100 0000 0010 0111 1110 0001 0100 1000 converted to decimal base ten (double)

How to convert 64 bit double precision IEEE 754 binary floating point:
1 - 001 1100 0010 - 0010 0101 1100 0010 0001 0100 0000 0010 0111 1110 0001 0100 1000.

1. Identify the elements that make up the binary representation of the number:

First bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.


The next 11 bits contain the exponent:
001 1100 0010


The last 52 bits contain the mantissa:
0010 0101 1100 0010 0001 0100 0000 0010 0111 1110 0001 0100 1000

2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):

001 1100 0010(2) =


0 × 210 + 0 × 29 + 1 × 28 + 1 × 27 + 1 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 0 × 20 =


0 + 0 + 256 + 128 + 64 + 0 + 0 + 0 + 0 + 2 + 0 =


256 + 128 + 64 + 2 =


450(10)

3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1023, that is due to the 11 bit excess/bias notation:

Exponent adjusted = 450 - 1023 = -573

4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):

0010 0101 1100 0010 0001 0100 0000 0010 0111 1110 0001 0100 1000(2) =

0 × 2-1 + 0 × 2-2 + 1 × 2-3 + 0 × 2-4 + 0 × 2-5 + 1 × 2-6 + 0 × 2-7 + 1 × 2-8 + 1 × 2-9 + 1 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 1 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 1 × 2-20 + 0 × 2-21 + 1 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 0 × 2-26 + 0 × 2-27 + 0 × 2-28 + 0 × 2-29 + 0 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 1 × 2-34 + 1 × 2-35 + 1 × 2-36 + 1 × 2-37 + 1 × 2-38 + 1 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 1 × 2-44 + 0 × 2-45 + 1 × 2-46 + 0 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =


0 + 0 + 0.125 + 0 + 0 + 0.015 625 + 0 + 0.003 906 25 + 0.001 953 125 + 0.000 976 562 5 + 0 + 0 + 0 + 0 + 0.000 030 517 578 125 + 0 + 0 + 0 + 0 + 0.000 000 953 674 316 406 25 + 0 + 0.000 000 238 418 579 101 562 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0 + 0 + 0 + 0 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =


0.125 + 0.015 625 + 0.003 906 25 + 0.001 953 125 + 0.000 976 562 5 + 0.000 030 517 578 125 + 0.000 000 953 674 316 406 25 + 0.000 000 238 418 579 101 562 5 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =


0.147 492 647 751 350 958 174 043 626 058 846 712 112 426 757 812 5(10)

Conclusion:

5. Put all the numbers into expression to calculate the double precision floating point decimal value:

(-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =


(-1)1 × (1 + 0.147 492 647 751 350 958 174 043 626 058 846 712 112 426 757 812 5) × 2-573 =


-1.147 492 647 751 350 958 174 043 626 058 846 712 112 426 757 812 5 × 2-573 =


-0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 037 116 105 126 320 520 716 997 705 386 996 021 902 392 624 251 194 940 405 986 526 493 037 202 773 199 688 637 785 653 371 582 238 897 358 503 705 934 546 402 684 459 385 144 137 8

1 - 001 1100 0010 - 0010 0101 1100 0010 0001 0100 0000 0010 0111 1110 0001 0100 1000
converted from
64 bit double precision IEEE 754 binary floating point
to
base ten decimal system (double) =


-0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 037 116 105 126 320 520 716 997 705 386 996 021 902 392 624 251 194 940 405 986 526 493 037 202 773 199 688 637 785 653 371 582 238 897 358 503 705 934 546 402 684 459 385 144 137 8(10)

Convert 64 bit double precision IEEE 754 floating point standard binary numbers to base ten decimal system (double)

64 bit double precision IEEE 754 binary floating point standard representation of numbers requires three building blocks: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

Latest 64 bit double precision IEEE 754 floating point binary standard numbers converted to decimal base ten (double)

1 - 001 1100 0010 - 0010 0101 1100 0010 0001 0100 0000 0010 0111 1110 0001 0100 1000 = -0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 037 116 105 126 320 520 716 997 705 386 996 021 902 392 624 251 194 940 405 986 526 493 037 202 773 199 688 637 785 653 371 582 238 897 358 503 705 934 546 402 684 459 385 144 137 8 Jun 27 12:59 UTC (GMT)
1 - 100 0010 1111 - 0000 0000 0101 1100 1001 0110 0000 0000 0000 0000 0000 0000 0000 = -281 872 630 284 288 Jun 27 12:57 UTC (GMT)
1 - 101 1101 0111 - 0000 0100 0001 0011 0100 0000 0000 0010 0001 0000 0000 0000 0001 = -12 388 448 552 302 802 078 975 562 335 187 693 092 784 651 684 154 461 207 378 386 052 468 107 114 899 276 509 825 120 431 179 690 220 991 466 667 878 920 314 642 497 406 321 846 273 441 792 Jun 27 12:55 UTC (GMT)
0 - 100 0001 0001 - 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 294 912 Jun 27 12:55 UTC (GMT)
0 - 100 0000 1111 - 0111 0000 0011 0101 1110 1110 1101 1001 1100 0001 1111 1110 1101 = 94 261.933 010 220 251 162 536 442 279 815 673 828 125 Jun 27 12:54 UTC (GMT)
1 - 100 0000 0100 - 1101 0110 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -58.781 25 Jun 27 12:54 UTC (GMT)
1 - 000 1101 1000 - 0100 1000 0000 1000 0000 1000 0001 1001 0100 0100 1000 0000 1000 = -0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 501 304 949 372 258 028 721 305 278 858 027 411 459 394 411 963 406 796 024 141 861 8 Jun 27 12:54 UTC (GMT)
0 - 100 0000 0000 - 0101 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 2.625 Jun 27 12:50 UTC (GMT)
0 - 100 0011 1000 - 1000 0010 1001 0101 0000 0100 0000 0000 0000 0000 0000 0000 0000 = 217 626 370 845 442 048 Jun 27 12:47 UTC (GMT)
0 - 100 0001 0010 - 1101 1011 1101 0111 1000 1000 0010 0111 0010 1000 0110 0010 1111 = 974 524.254 779 999 959 282 577 037 811 279 296 875 Jun 27 12:44 UTC (GMT)
1 - 000 0000 0000 - 0000 0000 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -0 Jun 27 12:44 UTC (GMT)
0 - 011 1111 1110 - 1111 0000 0110 0101 1011 0111 1111 1111 1111 0101 1011 1101 1111 = 0.969 526 052 470 310 761 854 932 479 764 102 026 820 182 800 292 968 75 Jun 27 12:37 UTC (GMT)
0 - 100 0000 0101 - 0111 1000 1110 1111 0011 0100 1101 0110 1010 0001 0110 0010 0101 = 94.233 600 000 000 095 064 933 702 815 324 068 069 458 007 812 5 Jun 27 12:35 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from 64 bit double precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 64 bit double precision IEEE 754 binary floating point representation to base 10 decimal system:

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent.
    The last 52 bits contain the mantissa.
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10).
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation.
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10).
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted)

Example: convert the number 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 from 64 bit double precision IEEE 754 binary floating point system to base ten decimal (double):

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent: 100 0011 1101
    The last 52 bits contain the mantissa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1,024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1,024 + 32 + 16 + 8 + 4 + 1 =
    1,085(10)
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation:
    Exponent adjusted = 1,085 - 1,023 = 62
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0.5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 488 281 25 + 0 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0.5 + 0.000 488 281 25 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =
    (-1)1 × (1 + 0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 converted from 64 bit double precision IEEE 754 binary floating point representation to a decimal number (float) in decimal system (in base 10) = -6 919 868 872 153 800 704(10)