64 bit double precision IEEE 754 binary floating point number 1 - 001 1100 0010 - 0010 0101 1100 0010 0001 0100 0000 0010 0111 1110 0001 0100 1000 converted to decimal base ten (double)

How to convert 64 bit double precision IEEE 754 binary floating point:
1 - 001 1100 0010 - 0010 0101 1100 0010 0001 0100 0000 0010 0111 1110 0001 0100 1000.

1. Identify the elements that make up the binary representation of the number:

First bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.


The next 11 bits contain the exponent:
001 1100 0010


The last 52 bits contain the mantissa:
0010 0101 1100 0010 0001 0100 0000 0010 0111 1110 0001 0100 1000

2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):

001 1100 0010(2) =


0 × 210 + 0 × 29 + 1 × 28 + 1 × 27 + 1 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 0 × 20 =


0 + 0 + 256 + 128 + 64 + 0 + 0 + 0 + 0 + 2 + 0 =


256 + 128 + 64 + 2 =


450(10)

3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1023, that is due to the 11 bit excess/bias notation:

Exponent adjusted = 450 - 1023 = -573

4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):

0010 0101 1100 0010 0001 0100 0000 0010 0111 1110 0001 0100 1000(2) =

0 × 2-1 + 0 × 2-2 + 1 × 2-3 + 0 × 2-4 + 0 × 2-5 + 1 × 2-6 + 0 × 2-7 + 1 × 2-8 + 1 × 2-9 + 1 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 1 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 1 × 2-20 + 0 × 2-21 + 1 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 0 × 2-26 + 0 × 2-27 + 0 × 2-28 + 0 × 2-29 + 0 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 1 × 2-34 + 1 × 2-35 + 1 × 2-36 + 1 × 2-37 + 1 × 2-38 + 1 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 1 × 2-44 + 0 × 2-45 + 1 × 2-46 + 0 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =


0 + 0 + 0.125 + 0 + 0 + 0.015 625 + 0 + 0.003 906 25 + 0.001 953 125 + 0.000 976 562 5 + 0 + 0 + 0 + 0 + 0.000 030 517 578 125 + 0 + 0 + 0 + 0 + 0.000 000 953 674 316 406 25 + 0 + 0.000 000 238 418 579 101 562 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0 + 0 + 0 + 0 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =


0.125 + 0.015 625 + 0.003 906 25 + 0.001 953 125 + 0.000 976 562 5 + 0.000 030 517 578 125 + 0.000 000 953 674 316 406 25 + 0.000 000 238 418 579 101 562 5 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =


0.147 492 647 751 350 958 174 043 626 058 846 712 112 426 757 812 5(10)

Conclusion:

5. Put all the numbers into expression to calculate the double precision floating point decimal value:

(-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =


(-1)1 × (1 + 0.147 492 647 751 350 958 174 043 626 058 846 712 112 426 757 812 5) × 2-573 =


-1.147 492 647 751 350 958 174 043 626 058 846 712 112 426 757 812 5 × 2-573 =


-0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 037 116 105 126 320 520 716 997 705 386 996 021 902 392 624 251 194 940 405 986 526 493 037 202 773 199 688 637 785 653 371 582 238 897 358 503 705 934 546 402 684 459 385 144 137 8

1 - 001 1100 0010 - 0010 0101 1100 0010 0001 0100 0000 0010 0111 1110 0001 0100 1000
converted from
64 bit double precision IEEE 754 binary floating point
to
base ten decimal system (double) =


-0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 037 116 105 126 320 520 716 997 705 386 996 021 902 392 624 251 194 940 405 986 526 493 037 202 773 199 688 637 785 653 371 582 238 897 358 503 705 934 546 402 684 459 385 144 137 8(10)

Convert 64 bit double precision IEEE 754 floating point standard binary numbers to base ten decimal system (double)

64 bit double precision IEEE 754 binary floating point standard representation of numbers requires three building blocks: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

Latest 64 bit double precision IEEE 754 floating point binary standard numbers converted to decimal base ten (double)

1 - 001 1100 0010 - 0010 0101 1100 0010 0001 0100 0000 0010 0111 1110 0001 0100 1000 = -0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 037 116 105 126 320 520 716 997 705 386 996 021 902 392 624 251 194 940 405 986 526 493 037 202 773 199 688 637 785 653 371 582 238 897 358 503 705 934 546 402 684 459 385 144 137 8 Nov 18 17:08 UTC (GMT)
0 - 011 1101 1001 - 0000 0011 1101 0101 0101 0101 0000 0000 0000 0000 0000 0000 0000 = 0.000 000 000 003 692 453 677 886 509 133 543 313 510 017 469 525 337 219 238 281 25 Nov 18 17:08 UTC (GMT)
0 - 011 1010 0110 - 0110 0001 1010 1111 0001 1101 0110 1010 1000 0011 0000 0111 1010 = 0.000 000 000 000 000 000 000 000 002 232 060 112 083 283 453 478 333 432 534 178 338 406 333 632 699 827 663 113 095 009 573 134 648 930 836 654 301 401 722 477 748 990 058 898 925 781 25 Nov 18 17:08 UTC (GMT)
1 - 111 0110 0000 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -246 006 311 446 272 417 135 694 895 366 447 328 831 463 738 361 430 131 889 861 407 236 509 911 043 906 984 606 020 737 387 080 298 687 645 418 100 644 428 599 105 378 407 753 391 907 201 399 550 988 776 412 284 181 771 799 458 695 654 166 637 769 167 516 870 901 097 035 133 833 253 825 096 549 816 225 533 764 062 867 857 067 136 321 933 279 232 Nov 18 17:06 UTC (GMT)
0 - 100 0010 1010 - 0010 0111 0100 0111 1101 1110 0101 0101 0101 0101 0100 1110 1000 = 10 145 768 843 946.453 125 Nov 18 17:04 UTC (GMT)
0 - 100 0001 1011 - 0100 1000 1110 0100 1010 0101 1011 1110 0010 0001 0100 1011 0011 = 344 869 467.883 128 345 012 664 794 921 875 Nov 18 17:04 UTC (GMT)
0 - 100 0000 0011 - 1110 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000 = 30.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 Nov 18 17:03 UTC (GMT)
1 - 101 1110 1110 - 0001 1000 1011 0001 0101 1011 1110 0101 1000 0011 1100 1000 1010 = -112 160 303 098 420 918 950 169 373 941 268 746 235 202 318 350 958 141 201 590 755 275 183 852 985 354 454 512 506 389 707 015 830 140 880 199 611 223 533 365 352 640 767 361 235 614 081 277 231 104 Nov 18 17:01 UTC (GMT)
0 - 000 0000 0000 - 0100 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 0 Nov 18 16:59 UTC (GMT)
1 - 100 0000 0100 - 1011 0001 1100 0010 1000 1111 0100 1110 0001 0100 0111 1010 0111 = -54.219 999 895 095 774 888 886 808 184 906 840 324 401 855 468 75 Nov 18 16:58 UTC (GMT)
0 - 011 1110 0001 - 0001 0010 1110 0000 1011 1110 1000 0010 0110 1101 0110 1001 0101 = 0.000 000 001 000 000 000 000 000 062 281 591 457 779 856 418 897 068 692 785 978 782 922 029 495 239 257 812 5 Nov 18 16:58 UTC (GMT)
1 - 100 0000 1101 - 1111 1110 0010 1111 0011 1011 1000 1000 0010 0110 1010 1010 1000 = -32 651.808 136 562 496 656 551 957 130 432 128 906 25 Nov 18 16:57 UTC (GMT)
1 - 101 1100 1010 - 0001 0010 0110 0011 1000 0010 1010 1111 0101 0010 1010 1000 0010 = -1 595 490 736 029 241 154 837 177 729 981 154 941 948 596 263 229 714 338 765 839 157 038 697 237 824 497 339 153 227 557 953 318 823 221 288 655 574 310 275 200 659 640 852 120 862 720 Nov 18 16:55 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from 64 bit double precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 64 bit double precision IEEE 754 binary floating point representation to base 10 decimal system:

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent.
    The last 52 bits contain the mantissa.
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10).
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation.
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10).
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted)

Example: convert the number 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 from 64 bit double precision IEEE 754 binary floating point system to base ten decimal (double):

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent: 100 0011 1101
    The last 52 bits contain the mantissa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1,024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1,024 + 32 + 16 + 8 + 4 + 1 =
    1,085(10)
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation:
    Exponent adjusted = 1,085 - 1,023 = 62
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0.5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 488 281 25 + 0 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0.5 + 0.000 488 281 25 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =
    (-1)1 × (1 + 0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 converted from 64 bit double precision IEEE 754 binary floating point representation to a decimal number (float) in decimal system (in base 10) = -6 919 868 872 153 800 704(10)