64bit IEEE 754: Double Precision Floating Point Binary -> Double: 1 - 001 1011 1000 - 0111 0011 1011 1011 1001 1101 1101 1100 1110 1110 1101 1100 0100 The 64 Bit Double Precision IEEE 754 Binary Floating Point Standard Representation Number Converted and Written as a Base Ten Decimal System Number (Double)
1 - 001 1011 1000 - 0111 0011 1011 1011 1001 1101 1101 1100 1110 1110 1101 1100 0100: 64 bit double precision IEEE 754 binary floating point standard representation number converted to decimal system (base ten)
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
1
The next 11 bits contain the exponent:
001 1011 1000
The last 52 bits contain the mantissa:
0111 0011 1011 1011 1001 1101 1101 1100 1110 1110 1101 1100 0100
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
001 1011 1000(2) =
0 × 210 + 0 × 29 + 1 × 28 + 1 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 0 × 22 + 0 × 21 + 0 × 20 =
0 + 0 + 256 + 128 + 0 + 32 + 16 + 8 + 0 + 0 + 0 =
256 + 128 + 32 + 16 + 8 =
440(10)
3. Adjust the exponent.
Subtract the excess bits: 2(11 - 1) - 1 = 1023,
that is due to the 11 bit excess/bias notation.
The exponent, adjusted = 440 - 1023 = -583
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
0111 0011 1011 1011 1001 1101 1101 1100 1110 1110 1101 1100 0100(2) =
0 × 2-1 + 1 × 2-2 + 1 × 2-3 + 1 × 2-4 + 0 × 2-5 + 0 × 2-6 + 1 × 2-7 + 1 × 2-8 + 1 × 2-9 + 0 × 2-10 + 1 × 2-11 + 1 × 2-12 + 1 × 2-13 + 0 × 2-14 + 1 × 2-15 + 1 × 2-16 + 1 × 2-17 + 0 × 2-18 + 0 × 2-19 + 1 × 2-20 + 1 × 2-21 + 1 × 2-22 + 0 × 2-23 + 1 × 2-24 + 1 × 2-25 + 1 × 2-26 + 0 × 2-27 + 1 × 2-28 + 1 × 2-29 + 1 × 2-30 + 0 × 2-31 + 0 × 2-32 + 1 × 2-33 + 1 × 2-34 + 1 × 2-35 + 0 × 2-36 + 1 × 2-37 + 1 × 2-38 + 1 × 2-39 + 0 × 2-40 + 1 × 2-41 + 1 × 2-42 + 0 × 2-43 + 1 × 2-44 + 1 × 2-45 + 1 × 2-46 + 0 × 2-47 + 0 × 2-48 + 0 × 2-49 + 1 × 2-50 + 0 × 2-51 + 0 × 2-52 =
0 + 0.25 + 0.125 + 0.062 5 + 0 + 0 + 0.007 812 5 + 0.003 906 25 + 0.001 953 125 + 0 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0 + 0 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 + 0 + 0.000 000 059 604 644 775 390 625 + 0.000 000 029 802 322 387 695 312 5 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0.000 000 003 725 290 298 461 914 062 5 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0 + 0 + 0.000 000 000 116 415 321 826 934 814 453 125 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0 + 0 + 0 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0 + 0 =
0.25 + 0.125 + 0.062 5 + 0.007 812 5 + 0.003 906 25 + 0.001 953 125 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 + 0.000 000 059 604 644 775 390 625 + 0.000 000 029 802 322 387 695 312 5 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 003 725 290 298 461 914 062 5 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 116 415 321 826 934 814 453 125 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 =
0.452 081 552 923 901 064 389 156 090 328 469 872 474 670 410 156 25(10)
5. Put all the numbers into expression to calculate the double precision floating point decimal value:
(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =
(-1)1 × (1 + 0.452 081 552 923 901 064 389 156 090 328 469 872 474 670 410 156 25) × 2-583 =
-1.452 081 552 923 901 064 389 156 090 328 469 872 474 670 410 156 25 × 2-583 =
-0
1 - 001 1011 1000 - 0111 0011 1011 1011 1001 1101 1101 1100 1110 1110 1101 1100 0100 converted from a 64 bit double precision IEEE 754 binary floating point standard representation number to a decimal system number, written in base ten (double) = -0(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.
Convert 64 bit double precision IEEE 754 binary floating point standard numbers to base ten decimal system (double)
A number in 64 bit double precision IEEE 754 binary floating point standard representation...
... requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)