64 bit double precision IEEE 754 binary floating point number 1 - 000 1101 1000 - 0100 1000 0000 1000 0000 1000 0001 1001 0100 0100 1000 0000 1000 converted to decimal base ten (double)

How to convert 64 bit double precision IEEE 754 binary floating point:
1 - 000 1101 1000 - 0100 1000 0000 1000 0000 1000 0001 1001 0100 0100 1000 0000 1000.

1. Identify the elements that make up the binary representation of the number:

First bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.


The next 11 bits contain the exponent:
000 1101 1000


The last 52 bits contain the mantissa:
0100 1000 0000 1000 0000 1000 0001 1001 0100 0100 1000 0000 1000

2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):

000 1101 1000(2) =


0 × 210 + 0 × 29 + 0 × 28 + 1 × 27 + 1 × 26 + 0 × 25 + 1 × 24 + 1 × 23 + 0 × 22 + 0 × 21 + 0 × 20 =


0 + 0 + 0 + 128 + 64 + 0 + 16 + 8 + 0 + 0 + 0 =


128 + 64 + 16 + 8 =


216(10)

3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1023, that is due to the 11 bit excess/bias notation:

Exponent adjusted = 216 - 1023 = -807

4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):

0100 1000 0000 1000 0000 1000 0001 1001 0100 0100 1000 0000 1000(2) =

0 × 2-1 + 1 × 2-2 + 0 × 2-3 + 0 × 2-4 + 1 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 1 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 1 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 0 × 2-26 + 0 × 2-27 + 1 × 2-28 + 1 × 2-29 + 0 × 2-30 + 0 × 2-31 + 1 × 2-32 + 0 × 2-33 + 1 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 1 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 0 × 2-45 + 0 × 2-46 + 0 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =


0 + 0.25 + 0 + 0 + 0.031 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 122 070 312 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 476 837 158 203 125 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 003 725 290 298 461 914 062 5 + 0.000 000 001 862 645 149 230 957 031 25 + 0 + 0 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0 + 0 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =


0.25 + 0.031 25 + 0.000 122 070 312 5 + 0.000 000 476 837 158 203 125 + 0.000 000 003 725 290 298 461 914 062 5 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =


0.281 372 553 032 726 457 900 025 707 203 894 853 591 918 945 312 5(10)

Conclusion:

5. Put all the numbers into expression to calculate the double precision floating point decimal value:

(-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =


(-1)1 × (1 + 0.281 372 553 032 726 457 900 025 707 203 894 853 591 918 945 312 5) × 2-807 =


-1.281 372 553 032 726 457 900 025 707 203 894 853 591 918 945 312 5 × 2-807 =


-0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 501 304 949 372 258 028 721 305 278 858 027 411 459 394 411 963 406 796 024 141 861 8

1 - 000 1101 1000 - 0100 1000 0000 1000 0000 1000 0001 1001 0100 0100 1000 0000 1000
converted from
64 bit double precision IEEE 754 binary floating point
to
base ten decimal system (double) =


-0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 501 304 949 372 258 028 721 305 278 858 027 411 459 394 411 963 406 796 024 141 861 8(10)

Convert 64 bit double precision IEEE 754 floating point standard binary numbers to base ten decimal system (double)

64 bit double precision IEEE 754 binary floating point standard representation of numbers requires three building blocks: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

Latest 64 bit double precision IEEE 754 floating point binary standard numbers converted to decimal base ten (double)

1 - 000 1101 1000 - 0100 1000 0000 1000 0000 1000 0001 1001 0100 0100 1000 0000 1000 = -0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 501 304 949 372 258 028 721 305 278 858 027 411 459 394 411 963 406 796 024 141 861 8 Jun 27 12:54 UTC (GMT)
0 - 100 0000 0000 - 0101 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 2.625 Jun 27 12:50 UTC (GMT)
0 - 100 0011 1000 - 1000 0010 1001 0101 0000 0100 0000 0000 0000 0000 0000 0000 0000 = 217 626 370 845 442 048 Jun 27 12:47 UTC (GMT)
0 - 100 0001 0010 - 1101 1011 1101 0111 1000 1000 0010 0111 0010 1000 0110 0010 1111 = 974 524.254 779 999 959 282 577 037 811 279 296 875 Jun 27 12:44 UTC (GMT)
1 - 000 0000 0000 - 0000 0000 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -0 Jun 27 12:44 UTC (GMT)
0 - 011 1111 1110 - 1111 0000 0110 0101 1011 0111 1111 1111 1111 0101 1011 1101 1111 = 0.969 526 052 470 310 761 854 932 479 764 102 026 820 182 800 292 968 75 Jun 27 12:37 UTC (GMT)
0 - 100 0000 0101 - 0111 1000 1110 1111 0011 0100 1101 0110 1010 0001 0110 0010 0101 = 94.233 600 000 000 095 064 933 702 815 324 068 069 458 007 812 5 Jun 27 12:35 UTC (GMT)
0 - 100 0000 0101 - 0111 1101 0111 0000 1010 0011 1101 0111 0000 1010 0011 1101 0111 = 95.359 999 999 999 999 431 565 811 391 919 851 303 100 585 937 5 Jun 27 12:34 UTC (GMT)
0 - 100 0001 1011 - 0111 0010 1110 0100 0110 1011 0101 1010 0101 1101 0000 1111 1111 = 388 908 725.647 720 277 309 417 724 609 375 Jun 27 12:29 UTC (GMT)
1 - 100 0000 0001 - 1000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -6.125 Jun 27 12:26 UTC (GMT)
1 - 110 0000 0111 - 0101 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -4 612 285 927 900 253 402 253 464 599 382 811 067 852 901 842 283 783 321 936 905 136 640 286 826 345 300 160 019 844 758 569 414 779 125 370 959 216 151 201 493 691 335 687 309 620 061 573 175 258 092 929 024 Jun 27 12:25 UTC (GMT)
0 - 100 0000 0001 - 1110 0100 1010 1000 1001 0100 1010 0101 0011 0001 1001 0100 1100 = 7.572 789 346 048 306 668 990 335 310 809 314 250 946 044 921 875 Jun 27 12:24 UTC (GMT)
0 - 100 0011 0010 - 1011 0110 0011 0111 0101 0101 0011 0010 1011 0010 1011 0100 0000 = 3 854 589 964 424 608 Jun 27 12:20 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from 64 bit double precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 64 bit double precision IEEE 754 binary floating point representation to base 10 decimal system:

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent.
    The last 52 bits contain the mantissa.
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10).
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation.
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10).
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted)

Example: convert the number 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 from 64 bit double precision IEEE 754 binary floating point system to base ten decimal (double):

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent: 100 0011 1101
    The last 52 bits contain the mantissa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1,024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1,024 + 32 + 16 + 8 + 4 + 1 =
    1,085(10)
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation:
    Exponent adjusted = 1,085 - 1,023 = 62
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0.5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 488 281 25 + 0 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0.5 + 0.000 488 281 25 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =
    (-1)1 × (1 + 0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 converted from 64 bit double precision IEEE 754 binary floating point representation to a decimal number (float) in decimal system (in base 10) = -6 919 868 872 153 800 704(10)