Converter: 64 bit double precision IEEE 754 binary floating point numbers converted to decimal base ten (double)

Please check the form fields values.
Exponent: empty
Mantissa: empty

Convert 64 bit double precision IEEE 754 floating point standard binary numbers to base ten decimal system (double)

64 bit double precision IEEE 754 binary floating point standard representation of numbers requires three building blocks: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

Latest 64 bit double precision IEEE 754 floating point binary standard numbers converted to decimal base ten (double)

0 - 100 0000 0100 - 1001 0010 1010 1100 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 50.333 984 375 Jun 26 11:48 UTC (GMT)
0 - 011 1111 1010 - 0000 0111 1100 1000 0100 1011 0101 1101 1100 1100 0110 0011 1111 = 0.032 199 999 999 999 999 455 990 717 933 673 295 192 420 482 635 498 046 875 Jun 26 11:36 UTC (GMT)
0 - 100 0000 0100 - 0101 0010 0001 1100 1010 1100 0000 1000 0011 0001 0010 0110 1111 = 42.264 000 000 000 002 899 014 361 901 208 758 354 187 011 718 75 Jun 26 11:35 UTC (GMT)
1 - 100 0000 0110 - 1101 0011 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -233.75 Jun 26 11:32 UTC (GMT)
1 - 101 0100 0101 - 1000 0101 0101 0000 0101 0101 0111 1110 0000 0000 1111 0101 0101 = -207 892 309 833 255 498 987 547 816 648 997 430 273 358 774 279 772 270 680 065 363 208 053 040 712 265 028 215 618 950 198 722 560 Jun 26 11:27 UTC (GMT)
1 - 100 0000 0010 - 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -10 Jun 26 11:19 UTC (GMT)
1 - 011 1111 1110 - 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -0.75 Jun 26 11:18 UTC (GMT)
0 - 100 0000 0100 - 1011 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 54 Jun 26 11:15 UTC (GMT)
0 - 000 1010 1101 - 0111 1010 0011 0111 0000 0011 1101 0001 1010 0110 0110 0100 0000 = 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 196 789 696 875 115 819 235 757 225 043 324 660 436 162 056 384 942 4 Jun 26 11:10 UTC (GMT)
0 - 101 1111 1111 - 1011 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 = 23 463 663 877 399 541 947 123 129 032 054 407 033 058 573 076 770 115 698 501 219 151 258 312 139 644 851 365 504 755 909 314 187 054 379 012 028 250 786 052 110 780 795 654 641 681 648 530 614 955 016 192 Jun 26 11:10 UTC (GMT)
1 - 001 1101 0111 - 1000 0010 0000 0011 0100 0000 0000 0010 0001 0000 0000 0000 0001 = -0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 102 283 131 622 246 595 645 548 124 409 543 463 611 879 232 936 954 243 306 834 404 755 764 975 713 566 553 948 135 668 983 702 360 025 871 015 765 040 067 021 928 887 307 355 652 288 838 8 Jun 26 11:06 UTC (GMT)
0 - 000 0000 0001 - 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 0 Jun 26 10:59 UTC (GMT)
0 - 100 0001 0010 - 1010 0100 0110 0011 1001 0100 1110 0101 1001 0111 0100 0111 0000 = 860 956.653 026 236 221 194 267 272 949 218 75 Jun 26 10:56 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from 64 bit double precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 64 bit double precision IEEE 754 binary floating point representation to base 10 decimal system:

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent.
    The last 52 bits contain the mantissa.
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10).
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation.
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10).
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted)

Example: convert the number 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 from 64 bit double precision IEEE 754 binary floating point system to base ten decimal (double):

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent: 100 0011 1101
    The last 52 bits contain the mantissa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1,024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1,024 + 32 + 16 + 8 + 4 + 1 =
    1,085(10)
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation:
    Exponent adjusted = 1,085 - 1,023 = 62
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0.5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 488 281 25 + 0 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0.5 + 0.000 488 281 25 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =
    (-1)1 × (1 + 0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 converted from 64 bit double precision IEEE 754 binary floating point representation to a decimal number (float) in decimal system (in base 10) = -6 919 868 872 153 800 704(10)