Binary ↘ Double: The 64 Bit Double Precision IEEE 754 Binary Floating Point Standard Representation Number 0 - 111 1111 1111 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0101 Converted and Written as a Base Ten Decimal System Number (as a Double)

0 - 111 1111 1111 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0101: 64 bit double precision IEEE 754 binary floating point standard representation number converted to decimal system (base ten)

1. Identify the elements that make up the binary representation of the number:

The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0


The next 11 bits contain the exponent:
111 1111 1111


The last 52 bits contain the mantissa:
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0101


2. Reserved bitpattern.

We notice that all the bits that make up the exponent are set on 1 (set) and the first bit of the mantissa is 0 (clear) while there is at least one bit of the mantissa set on 1.

This is one of the reserved bitpatterns of the special values of: SNaN (Signalling Not a Number).


A SNaN signals an exception when used in operations. A SNaN is a category of NaN (Not A Number).

In general, NaN is used to represent a value that is not a number.


0 - 111 1111 1111 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0101 converted from a 64 bit double precision IEEE 754 binary floating point standard representation number to a decimal system number, written in base ten (double) = SNaN, Signalling Not a Number

Spaces were used to group digits: for binary, by 4, for decimal, by 3.

The latest 64 bit double precision IEEE 754 floating point binary standard numbers converted and written as decimal system numbers (in base ten, double)

The number 1 - 000 0000 0001 - 0010 0001 0001 0001 0001 0001 0001 0001 0001 0001 0000 1101 1011 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Sep 14 00:44 UTC (GMT)
The number 0 - 011 1100 1100 - 0001 0010 0110 1010 0000 1101 0011 1111 1101 0101 1101 1000 1010 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Sep 14 00:44 UTC (GMT)
The number 0 - 000 0000 0000 - 0000 0000 0000 0000 0000 0000 0000 0000 0010 1111 1111 1011 1101 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Sep 14 00:43 UTC (GMT)
The number 1 - 100 0110 0010 - 1000 0000 0101 0011 1010 1010 0111 1101 0101 0111 1101 0111 0010 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Sep 14 00:43 UTC (GMT)
The number 0 - 011 0100 1001 - 0110 1001 0010 0100 1001 0010 0100 1001 0010 0100 1001 0011 0000 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Sep 14 00:43 UTC (GMT)
The number 0 - 011 1111 1111 - 0001 0011 1111 1111 1111 1111 1111 1111 1111 1111 1111 1100 0000 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Sep 14 00:42 UTC (GMT)
The number 0 - 100 0001 1101 - 0010 1001 0000 0100 0110 0000 1100 1111 1111 1111 1111 1111 0100 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Sep 14 00:42 UTC (GMT)
The number 0 - 011 1111 0100 - 0110 0011 0100 0010 1110 0100 0010 0101 0001 0101 1000 0000 1110 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Sep 14 00:41 UTC (GMT)
The number 0 - 100 0001 1000 - 0001 0111 0100 1010 1101 1111 0111 1011 1100 0110 0011 1011 0111 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Sep 14 00:41 UTC (GMT)
The number 0 - 111 0000 0000 - 1111 1101 1111 1111 1111 1111 1111 1111 1111 1111 1111 1001 1010 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Sep 14 00:41 UTC (GMT)
All 64 bit double precision IEEE 754 binary floating point representation numbers converted to base ten decimal numbers (double)

How to convert numbers from 64 bit double precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 64 bit double precision IEEE 754 binary floating point representation to base 10 decimal system:

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent.
    The last 52 bits contain the mantissa.
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10).
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation.
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10).
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted)

Example: convert the number 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 from 64 bit double precision IEEE 754 binary floating point system to base ten decimal (double):

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent: 100 0011 1101
    The last 52 bits contain the mantissa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1,024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1,024 + 32 + 16 + 8 + 4 + 1 =
    1,085(10)
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation:
    Exponent adjusted = 1,085 - 1,023 = 62
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0.5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 488 281 25 + 0 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0.5 + 0.000 488 281 25 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =
    (-1)1 × (1 + 0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 converted from 64 bit double precision IEEE 754 binary floating point representation to a decimal number (float) in decimal system (in base 10) = -6 919 868 872 153 800 704(10)