64 Bit IEEE 754 Binary to Double: Convert 0 - 111 1111 1110 - 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000, Number Written in 64 Bit Double Precision IEEE 754 Binary Floating Point Standard Representation, to a Base Ten Decimal System Double
0 - 111 1111 1110 - 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000: 64 bit double precision IEEE 754 binary floating point standard representation number converted to a base ten decimal system double
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 11 bits contain the exponent:
111 1111 1110
The last 52 bits contain the mantissa:
1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
111 1111 1110(2) =
1 × 210 + 1 × 29 + 1 × 28 + 1 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 0 × 20 =
1,024 + 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 0 =
1,024 + 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 =
2,046(10)
3. Adjust the exponent.
Subtract the excess bits: 2(11 - 1) - 1 = 1023,
that is due to the 11 bit excess/bias notation.
The exponent, adjusted = 2,046 - 1023 = 1023
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000(2) =
1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 0 × 2-26 + 0 × 2-27 + 0 × 2-28 + 0 × 2-29 + 0 × 2-30 + 0 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 0 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 0 × 2-45 + 0 × 2-46 + 0 × 2-47 + 0 × 2-48 + 0 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
0.5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 =
0.5 =
0.5(10)
5. Put all the numbers into expression to calculate the double precision floating point decimal value:
(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =
(-1)0 × (1 + 0.5) × 21023 =
1.5 × 21023 =
134 826 985 114 673 693 079 697 889 309 176 855 021 348 273 420 672 992 955 072 560 868 299 506 854 125 722 349 531 357 991 805 652 015 840 085 409 903 545 018 244 092 326 610 812 466 869 635 572 979 605 593 283 325 920 068 649 113 957 226 664 700 934 570 589 589 812 214 063 754 326 628 613 011 756 847 161 105 434 832 905 620 427 872 512 883 013 439 723 679 960 434 453 859 787 228 626 517 247 218 168 102 912
0 - 111 1111 1110 - 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 converted from a 64 bit double precision IEEE 754 binary floating point standard representation number to a decimal system number, written in base ten (double) = 134 826 985 114 673 693 079 697 889 309 176 855 021 348 273 420 672 992 955 072 560 868 299 506 854 125 722 349 531 357 991 805 652 015 840 085 409 903 545 018 244 092 326 610 812 466 869 635 572 979 605 593 283 325 920 068 649 113 957 226 664 700 934 570 589 589 812 214 063 754 326 628 613 011 756 847 161 105 434 832 905 620 427 872 512 883 013 439 723 679 960 434 453 859 787 228 626 517 247 218 168 102 912(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.