64 bit double precision IEEE 754 binary floating point number 0 - 111 1110 1000 - 1000 1011 1011 1110 1001 0000 0000 0000 0000 0000 0000 0000 0011 converted to decimal base ten (double)

64 bit double precision IEEE 754 binary floating point 0 - 111 1110 1000 - 1000 1011 1011 1110 1001 0000 0000 0000 0000 0000 0000 0000 0011 to decimal system (base ten) = ?

1. Identify the elements that make up the binary representation of the number:

The first bit (the leftmost) indicates the sign,

1 = negative, 0 = positive.
0


The next 11 bits contain the exponent:
111 1110 1000


The last 52 bits contain the mantissa:
1000 1011 1011 1110 1001 0000 0000 0000 0000 0000 0000 0000 0011


2. Convert the exponent from binary (base 2) to decimal (base 10):

The exponent is allways a positive integer.

111 1110 1000(2) =


1 × 210 + 1 × 29 + 1 × 28 + 1 × 27 + 1 × 26 + 1 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 0 × 21 + 0 × 20 =


1,024 + 512 + 256 + 128 + 64 + 32 + 0 + 8 + 0 + 0 + 0 =


1,024 + 512 + 256 + 128 + 64 + 32 + 8 =


2,024(10)

3. Adjust the exponent.

Subtract the excess bits: 2(11 - 1) - 1 = 1023,

that is due to the 11 bit excess/bias notation.


Exponent adjusted = 2,024 - 1023 = 1001


4. Convert the mantissa from binary (base 2) to decimal (base 10):

Mantissa represents the number's fractional part (the excess beyond the number's integer part, comma delimited).


1000 1011 1011 1110 1001 0000 0000 0000 0000 0000 0000 0000 0011(2) =

1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 1 × 2-5 + 0 × 2-6 + 1 × 2-7 + 1 × 2-8 + 1 × 2-9 + 0 × 2-10 + 1 × 2-11 + 1 × 2-12 + 1 × 2-13 + 1 × 2-14 + 1 × 2-15 + 0 × 2-16 + 1 × 2-17 + 0 × 2-18 + 0 × 2-19 + 1 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 0 × 2-26 + 0 × 2-27 + 0 × 2-28 + 0 × 2-29 + 0 × 2-30 + 0 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 0 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 0 × 2-45 + 0 × 2-46 + 0 × 2-47 + 0 × 2-48 + 0 × 2-49 + 0 × 2-50 + 1 × 2-51 + 1 × 2-52 =


0.5 + 0 + 0 + 0 + 0.031 25 + 0 + 0.007 812 5 + 0.003 906 25 + 0.001 953 125 + 0 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0 + 0.000 007 629 394 531 25 + 0 + 0 + 0.000 000 953 674 316 406 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =


0.5 + 0.031 25 + 0.007 812 5 + 0.003 906 25 + 0.001 953 125 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 007 629 394 531 25 + 0.000 000 953 674 316 406 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =


0.545 876 502 990 723 322 383 814 775 093 924 254 179 000 854 492 187 5(10)

5. Put all the numbers into expression to calculate the double precision floating point decimal value:

(-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =


(-1)0 × (1 + 0.545 876 502 990 723 322 383 814 775 093 924 254 179 000 854 492 187 5) × 21001 =


1.545 876 502 990 723 322 383 814 775 093 924 254 179 000 854 492 187 5 × 21001 =


33 128 399 572 031 351 116 381 906 106 370 381 279 061 835 957 335 841 778 158 403 140 695 145 348 475 503 835 604 414 630 356 299 759 148 904 211 099 264 437 856 566 396 308 691 045 620 002 634 435 000 995 394 236 099 165 929 575 111 824 583 908 204 333 549 967 233 522 513 663 342 395 304 923 618 295 837 101 273 001 304 612 253 053 239 468 504 723 867 841 098 327 766 169 126 622 298 194 023 809 024

0 - 111 1110 1000 - 1000 1011 1011 1110 1001 0000 0000 0000 0000 0000 0000 0000 0011 converted from 64 bit double precision IEEE 754 binary floating point to base ten decimal system (double) =
33 128 399 572 031 351 116 381 906 106 370 381 279 061 835 957 335 841 778 158 403 140 695 145 348 475 503 835 604 414 630 356 299 759 148 904 211 099 264 437 856 566 396 308 691 045 620 002 634 435 000 995 394 236 099 165 929 575 111 824 583 908 204 333 549 967 233 522 513 663 342 395 304 923 618 295 837 101 273 001 304 612 253 053 239 468 504 723 867 841 098 327 766 169 126 622 298 194 023 809 024(10)

More operations of this kind:

0 - 111 1110 1000 - 1000 1011 1011 1110 1001 0000 0000 0000 0000 0000 0000 0000 0010 = ?

0 - 111 1110 1000 - 1000 1011 1011 1110 1001 0000 0000 0000 0000 0000 0000 0000 0100 = ?


Convert 64 bit double precision IEEE 754 floating point standard binary numbers to base ten decimal system (double)

64 bit double precision IEEE 754 binary floating point standard representation of numbers requires three building blocks: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

Latest 64 bit double precision IEEE 754 floating point binary standard numbers converted to decimal base ten (double)

0 - 111 1110 1000 - 1000 1011 1011 1110 1001 0000 0000 0000 0000 0000 0000 0000 0011 = ? Mar 24 09:56 UTC (GMT)
0 - 100 0001 0110 - 0001 1101 1011 1011 0111 0111 0001 0000 0010 1111 1100 0111 0010 = ? Mar 24 09:53 UTC (GMT)
1 - 110 0000 0000 - 0111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1110 = ? Mar 24 09:51 UTC (GMT)
0 - 100 0000 0011 - 0011 1000 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1101 = ? Mar 24 09:50 UTC (GMT)
0 - 011 1111 1110 - 1011 0000 1111 1011 0010 1111 1101 0110 1101 0100 0100 1000 1101 = ? Mar 24 09:50 UTC (GMT)
1 - 101 0110 1010 - 1010 1101 0101 1001 1001 1111 1111 1111 1111 1111 1111 1110 0111 = ? Mar 24 09:50 UTC (GMT)
0 - 100 0000 0000 - 1111 1111 1111 1111 1111 1111 0010 1001 0011 1111 1111 1111 1110 = ? Mar 24 09:41 UTC (GMT)
0 - 111 1111 1111 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 1011 0000 0010 1101 = ? Mar 24 09:40 UTC (GMT)
0 - 100 0000 1001 - 1001 0000 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 = ? Mar 24 09:38 UTC (GMT)
0 - 100 0100 1000 - 0011 1000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1001 = ? Mar 24 09:36 UTC (GMT)
0 - 010 0001 1010 - 1001 1001 1001 1001 1001 0001 1000 1001 1010 0001 0000 1001 1101 = ? Mar 24 09:35 UTC (GMT)
0 - 011 0111 0111 - 0100 1001 0100 0111 1011 1101 1011 0101 1110 0011 1111 1001 1100 = ? Mar 24 09:34 UTC (GMT)
0 - 011 1111 1110 - 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = ? Mar 24 09:32 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from 64 bit double precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 64 bit double precision IEEE 754 binary floating point representation to base 10 decimal system:

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent.
    The last 52 bits contain the mantissa.
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10).
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation.
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10).
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted)

Example: convert the number 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 from 64 bit double precision IEEE 754 binary floating point system to base ten decimal (double):

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent: 100 0011 1101
    The last 52 bits contain the mantissa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1,024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1,024 + 32 + 16 + 8 + 4 + 1 =
    1,085(10)
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation:
    Exponent adjusted = 1,085 - 1,023 = 62
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0.5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 488 281 25 + 0 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0.5 + 0.000 488 281 25 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =
    (-1)1 × (1 + 0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 converted from 64 bit double precision IEEE 754 binary floating point representation to a decimal number (float) in decimal system (in base 10) = -6 919 868 872 153 800 704(10)