64bit IEEE 754: Double Precision Floating Point Binary -> Double: 0 - 110 0010 1000 - 0110 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 The 64 Bit Double Precision IEEE 754 Binary Floating Point Standard Representation Number Converted and Written as a Base Ten Decimal System Number (Double)
0 - 110 0010 1000 - 0110 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011: 64 bit double precision IEEE 754 binary floating point standard representation number converted to decimal system (base ten)
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 11 bits contain the exponent:
110 0010 1000
The last 52 bits contain the mantissa:
0110 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
110 0010 1000(2) =
1 × 210 + 1 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 0 × 21 + 0 × 20 =
1,024 + 512 + 0 + 0 + 0 + 32 + 0 + 8 + 0 + 0 + 0 =
1,024 + 512 + 32 + 8 =
1,576(10)
3. Adjust the exponent.
Subtract the excess bits: 2(11 - 1) - 1 = 1023,
that is due to the 11 bit excess/bias notation.
The exponent, adjusted = 1,576 - 1023 = 553
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
0110 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011(2) =
0 × 2-1 + 1 × 2-2 + 1 × 2-3 + 0 × 2-4 + 1 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 0 × 2-26 + 0 × 2-27 + 0 × 2-28 + 0 × 2-29 + 0 × 2-30 + 0 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 0 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 0 × 2-45 + 0 × 2-46 + 0 × 2-47 + 0 × 2-48 + 0 × 2-49 + 0 × 2-50 + 1 × 2-51 + 1 × 2-52 =
0 + 0.25 + 0.125 + 0 + 0.031 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0.25 + 0.125 + 0.031 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0.406 250 000 000 000 666 133 814 775 093 924 254 179 000 854 492 187 5(10)
5. Put all the numbers into expression to calculate the double precision floating point decimal value:
(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =
(-1)0 × (1 + 0.406 250 000 000 000 666 133 814 775 093 924 254 179 000 854 492 187 5) × 2553 =
1.406 250 000 000 000 666 133 814 775 093 924 254 179 000 854 492 187 5 × 2553 =
41 461 989 530 510 117 504 325 570 263 685 228 890 481 309 607 865 376 990 508 839 615 579 432 043 216 640 789 663 057 391 180 787 439 114 225 067 823 471 474 775 592 145 327 861 521 237 441 751 219 211 670 060 087 115 776
0 - 110 0010 1000 - 0110 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 converted from a 64 bit double precision IEEE 754 binary floating point standard representation number to a decimal system number, written in base ten (double) = 41 461 989 530 510 117 504 325 570 263 685 228 890 481 309 607 865 376 990 508 839 615 579 432 043 216 640 789 663 057 391 180 787 439 114 225 067 823 471 474 775 592 145 327 861 521 237 441 751 219 211 670 060 087 115 776(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.
Convert 64 bit double precision IEEE 754 binary floating point standard numbers to base ten decimal system (double)
A number in 64 bit double precision IEEE 754 binary floating point standard representation...
... requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)