64 bit double precision IEEE 754 binary floating point number 0 - 100 0111 1110 - 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 converted to decimal base ten (double)

How to convert 64 bit double precision IEEE 754 binary floating point:
0 - 100 0111 1110 - 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111.

1. Identify the elements that make up the binary representation of the number:

First bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.


The next 11 bits contain the exponent:
100 0111 1110


The last 52 bits contain the mantissa:
1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111

2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):

100 0111 1110(2) =


1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 0 × 20 =


1,024 + 0 + 0 + 0 + 64 + 32 + 16 + 8 + 4 + 2 + 0 =


1,024 + 64 + 32 + 16 + 8 + 4 + 2 =


1,150(10)

3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1023, that is due to the 11 bit excess/bias notation:

Exponent adjusted = 1,150 - 1023 = 127

4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):

1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111(2) =

1 × 2-1 + 1 × 2-2 + 1 × 2-3 + 1 × 2-4 + 1 × 2-5 + 1 × 2-6 + 1 × 2-7 + 1 × 2-8 + 1 × 2-9 + 1 × 2-10 + 1 × 2-11 + 1 × 2-12 + 1 × 2-13 + 1 × 2-14 + 1 × 2-15 + 1 × 2-16 + 1 × 2-17 + 1 × 2-18 + 1 × 2-19 + 1 × 2-20 + 1 × 2-21 + 1 × 2-22 + 1 × 2-23 + 1 × 2-24 + 1 × 2-25 + 1 × 2-26 + 1 × 2-27 + 1 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 1 × 2-32 + 1 × 2-33 + 1 × 2-34 + 1 × 2-35 + 1 × 2-36 + 1 × 2-37 + 1 × 2-38 + 1 × 2-39 + 1 × 2-40 + 1 × 2-41 + 1 × 2-42 + 1 × 2-43 + 1 × 2-44 + 1 × 2-45 + 1 × 2-46 + 1 × 2-47 + 1 × 2-48 + 1 × 2-49 + 1 × 2-50 + 1 × 2-51 + 1 × 2-52 =


0.5 + 0.25 + 0.125 + 0.062 5 + 0.031 25 + 0.015 625 + 0.007 812 5 + 0.003 906 25 + 0.001 953 125 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 + 0.000 000 059 604 644 775 390 625 + 0.000 000 029 802 322 387 695 312 5 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 007 450 580 596 923 828 125 + 0.000 000 003 725 290 298 461 914 062 5 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0.000 000 000 116 415 321 826 934 814 453 125 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =


0.999 999 999 999 999 777 955 395 074 968 691 915 273 666 381 835 937 5(10)

Conclusion:

5. Put all the numbers into expression to calculate the double precision floating point decimal value:

(-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =


(-1)0 × (1 + 0.999 999 999 999 999 777 955 395 074 968 691 915 273 666 381 835 937 5) × 2127 =


1.999 999 999 999 999 777 955 395 074 968 691 915 273 666 381 835 937 5 × 2127 =


340 282 366 920 938 425 684 442 744 474 606 501 888

0 - 100 0111 1110 - 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111
converted from
64 bit double precision IEEE 754 binary floating point
to
base ten decimal system (double) =


340 282 366 920 938 425 684 442 744 474 606 501 888(10)

Convert 64 bit double precision IEEE 754 floating point standard binary numbers to base ten decimal system (double)

64 bit double precision IEEE 754 binary floating point standard representation of numbers requires three building blocks: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

Latest 64 bit double precision IEEE 754 floating point binary standard numbers converted to decimal base ten (double)

0 - 100 0111 1110 - 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 = 340 282 366 920 938 425 684 442 744 474 606 501 888 Apr 04 17:38 UTC (GMT)
0 - 100 1000 0011 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 5 444 517 870 735 015 415 413 993 718 908 291 383 296 Apr 04 17:36 UTC (GMT)
0 - 100 0000 0011 - 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 24 Apr 04 17:34 UTC (GMT)
1 - 100 0000 0101 - 0100 1101 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -83.25 Apr 04 17:31 UTC (GMT)
0 - 110 0011 0000 - 0011 0111 0101 0111 0011 0110 0100 0110 1111 0110 1111 0100 0000 = 9 179 593 728 708 743 198 721 133 024 012 996 334 309 533 151 343 662 555 319 109 647 047 605 443 193 895 018 320 781 051 598 986 080 402 073 250 472 916 956 439 799 689 412 990 557 070 577 071 619 124 335 790 488 461 246 464 Apr 04 17:27 UTC (GMT)
0 - 101 1111 0000 - 0011 0010 0111 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 489 789 860 550 377 917 134 847 078 965 628 620 706 732 054 191 563 313 685 198 290 337 382 324 333 865 946 734 395 546 346 249 636 307 092 206 185 224 213 505 804 205 592 177 614 811 415 703 453 696 Apr 04 17:25 UTC (GMT)
1 - 100 0000 0111 - 1000 0110 0111 0001 0001 1110 1011 1000 0101 0001 1110 1011 1001 = -390.441 875 000 000 038 653 524 825 349 450 111 389 160 156 25 Apr 04 17:23 UTC (GMT)
0 - 100 0000 0011 - 1110 1101 0100 0111 1010 1110 0001 0100 0111 1010 1110 0001 0100 = 30.829 999 999 999 998 294 697 434 175 759 553 909 301 757 812 5 Apr 04 17:21 UTC (GMT)
0 - 100 0000 0011 - 1110 1101 0100 0111 1010 1110 0001 0100 0111 1010 1110 0001 0100 = 30.829 999 999 999 998 294 697 434 175 759 553 909 301 757 812 5 Apr 04 17:18 UTC (GMT)
0 - 100 0000 0010 - 1010 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 13.125 Apr 04 17:12 UTC (GMT)
1 - 111 1001 0101 - 1100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -3 877 698 763 960 779 249 514 057 296 160 349 220 379 747 976 219 565 128 307 939 698 998 475 298 331 242 283 737 725 839 567 592 164 176 922 688 831 147 108 731 114 155 321 871 615 929 356 148 119 165 287 308 574 019 328 926 585 285 961 182 739 153 535 722 975 311 566 321 723 185 644 475 460 405 701 831 213 049 476 065 650 808 282 600 460 849 023 985 635 402 186 752 Apr 04 17:06 UTC (GMT)
0 - 010 0000 1001 - 0100 0001 0011 0101 0010 0100 1001 1111 0010 0000 1101 1001 1001 = 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 095 827 026 081 978 908 280 546 337 448 942 135 277 888 971 399 897 860 749 921 872 762 603 995 032 149 905 358 444 918 332 634 751 727 347 570 384 436 888 467 436 868 354 897 076 945 832 734 098 373 841 777 3 Apr 04 17:04 UTC (GMT)
1 - 011 1111 1001 - 0111 0110 1111 1011 0000 1001 0011 0000 0011 1010 0011 0010 0011 = -0.022 887 000 058 207 662 006 592 997 272 491 629 701 107 740 402 221 679 687 5 Apr 04 17:03 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from 64 bit double precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 64 bit double precision IEEE 754 binary floating point representation to base 10 decimal system:

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent.
    The last 52 bits contain the mantissa.
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10).
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation.
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10).
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted)

Example: convert the number 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 from 64 bit double precision IEEE 754 binary floating point system to base ten decimal (double):

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent: 100 0011 1101
    The last 52 bits contain the mantissa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1,024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1,024 + 32 + 16 + 8 + 4 + 1 =
    1,085(10)
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation:
    Exponent adjusted = 1,085 - 1,023 = 62
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0.5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 488 281 25 + 0 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0.5 + 0.000 488 281 25 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =
    (-1)1 × (1 + 0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 converted from 64 bit double precision IEEE 754 binary floating point representation to a decimal number (float) in decimal system (in base 10) = -6 919 868 872 153 800 704(10)