64bit IEEE 754: Double Precision Floating Point Binary -> Double: 0 - 100 0101 1000 - 1001 1101 1001 0111 0001 1110 0100 1111 1110 1000 0100 1100 0101 The 64 Bit Double Precision IEEE 754 Binary Floating Point Standard Representation Number Converted and Written as a Base Ten Decimal System Number (Double)
0 - 100 0101 1000 - 1001 1101 1001 0111 0001 1110 0100 1111 1110 1000 0100 1100 0101: 64 bit double precision IEEE 754 binary floating point standard representation number converted to decimal system (base ten)
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 11 bits contain the exponent:
100 0101 1000
The last 52 bits contain the mantissa:
1001 1101 1001 0111 0001 1110 0100 1111 1110 1000 0100 1100 0101
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
100 0101 1000(2) =
1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 1 × 26 + 0 × 25 + 1 × 24 + 1 × 23 + 0 × 22 + 0 × 21 + 0 × 20 =
1,024 + 0 + 0 + 0 + 64 + 0 + 16 + 8 + 0 + 0 + 0 =
1,024 + 64 + 16 + 8 =
1,112(10)
3. Adjust the exponent.
Subtract the excess bits: 2(11 - 1) - 1 = 1023,
that is due to the 11 bit excess/bias notation.
The exponent, adjusted = 1,112 - 1023 = 89
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
1001 1101 1001 0111 0001 1110 0100 1111 1110 1000 0100 1100 0101(2) =
1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 1 × 2-4 + 1 × 2-5 + 1 × 2-6 + 0 × 2-7 + 1 × 2-8 + 1 × 2-9 + 0 × 2-10 + 0 × 2-11 + 1 × 2-12 + 0 × 2-13 + 1 × 2-14 + 1 × 2-15 + 1 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 1 × 2-20 + 1 × 2-21 + 1 × 2-22 + 1 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 1 × 2-32 + 1 × 2-33 + 1 × 2-34 + 1 × 2-35 + 0 × 2-36 + 1 × 2-37 + 0 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 1 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 1 × 2-46 + 0 × 2-47 + 0 × 2-48 + 0 × 2-49 + 1 × 2-50 + 0 × 2-51 + 1 × 2-52 =
0.5 + 0 + 0 + 0.062 5 + 0.031 25 + 0.015 625 + 0 + 0.003 906 25 + 0.001 953 125 + 0 + 0 + 0.000 244 140 625 + 0 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0 + 0 + 0 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0.000 000 000 116 415 321 826 934 814 453 125 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0 + 0 + 0 + 0 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0 + 0 + 0 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0.5 + 0.062 5 + 0.031 25 + 0.015 625 + 0.003 906 25 + 0.001 953 125 + 0.000 244 140 625 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0.000 000 000 116 415 321 826 934 814 453 125 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0.615 587 133 892 675 497 648 383 498 017 210 513 353 347 778 320 312 5(10)
5. Put all the numbers into expression to calculate the double precision floating point decimal value:
(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =
(-1)0 × (1 + 0.615 587 133 892 675 497 648 383 498 017 210 513 353 347 778 320 312 5) × 289 =
1.615 587 133 892 675 497 648 383 498 017 210 513 353 347 778 320 312 5 × 289 =
1 000 000 000 000 026 813 883 482 112
0 - 100 0101 1000 - 1001 1101 1001 0111 0001 1110 0100 1111 1110 1000 0100 1100 0101 converted from a 64 bit double precision IEEE 754 binary floating point standard representation number to a decimal system number, written in base ten (double) = 1 000 000 000 000 026 813 883 482 112(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.
Convert 64 bit double precision IEEE 754 binary floating point standard numbers to base ten decimal system (double)
A number in 64 bit double precision IEEE 754 binary floating point standard representation...
... requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)