The 64 Bit Double Precision IEEE 754 Binary Floating Point Standard Representation Number 0 - 100 0011 0100 - 1101 1000 1000 0000 0000 1000 1000 0000 0000 1000 1000 0000 0001 Converted and Written as a Base Ten Decimal System Number (Double)

0 - 100 0011 0100 - 1101 1000 1000 0000 0000 1000 1000 0000 0000 1000 1000 0000 0001: 64 bit double precision IEEE 754 binary floating point standard representation number converted to decimal system (base ten)

The steps we'll go through to make the conversion:

Convert the exponent from binary (from base 2) to decimal (in base 10).

Adjust the exponent.

Convert the mantissa from binary (from base 2) to decimal (in base 10).

1. Identify the elements that make up the binary representation of the number:

The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0


The next 11 bits contain the exponent:
100 0011 0100


The last 52 bits contain the mantissa:
1101 1000 1000 0000 0000 1000 1000 0000 0000 1000 1000 0000 0001


2. Convert the exponent from binary (from base 2) to decimal (in base 10).

The exponent is allways a positive integer.

100 0011 0100(2) =


1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 0 × 20 =


1,024 + 0 + 0 + 0 + 0 + 32 + 16 + 0 + 4 + 0 + 0 =


1,024 + 32 + 16 + 4 =


1,076(10)

3. Adjust the exponent.

Subtract the excess bits: 2(11 - 1) - 1 = 1023,

that is due to the 11 bit excess/bias notation.


The exponent, adjusted = 1,076 - 1023 = 53


4. Convert the mantissa from binary (from base 2) to decimal (in base 10).

The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).


1101 1000 1000 0000 0000 1000 1000 0000 0000 1000 1000 0000 0001(2) =

1 × 2-1 + 1 × 2-2 + 0 × 2-3 + 1 × 2-4 + 1 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 1 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 1 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 1 × 2-25 + 0 × 2-26 + 0 × 2-27 + 0 × 2-28 + 0 × 2-29 + 0 × 2-30 + 0 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 1 × 2-37 + 0 × 2-38 + 0 × 2-39 + 0 × 2-40 + 1 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 0 × 2-45 + 0 × 2-46 + 0 × 2-47 + 0 × 2-48 + 0 × 2-49 + 0 × 2-50 + 0 × 2-51 + 1 × 2-52 =


0.5 + 0.25 + 0 + 0.062 5 + 0.031 25 + 0 + 0 + 0 + 0.001 953 125 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 476 837 158 203 125 + 0 + 0 + 0 + 0.000 000 029 802 322 387 695 312 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0 + 0 + 0 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =


0.5 + 0.25 + 0.062 5 + 0.031 25 + 0.001 953 125 + 0.000 000 476 837 158 203 125 + 0.000 000 029 802 322 387 695 312 5 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =


0.845 703 631 647 211 517 829 987 315 053 585 916 757 583 618 164 062 5(10)

5. Put all the numbers into expression to calculate the double precision floating point decimal value:

(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =


(-1)0 × (1 + 0.845 703 631 647 211 517 829 987 315 053 585 916 757 583 618 164 062 5) × 253 =


1.845 703 631 647 211 517 829 987 315 053 585 916 757 583 618 164 062 5 × 253 =


16 624 620 375 445 506

0 - 100 0011 0100 - 1101 1000 1000 0000 0000 1000 1000 0000 0000 1000 1000 0000 0001 converted from a 64 bit double precision IEEE 754 binary floating point standard representation number to a decimal system number, written in base ten (double) = 16 624 620 375 445 506(10)

Spaces were used to group digits: for binary, by 4, for decimal, by 3.

Number 0 - 100 0011 0100 - 1101 1000 1000 0000 0000 1000 1000 0000 0000 1000 1000 0000 0000 converted from 64 bit double precision IEEE 754 binary floating point standard representation to decimal system written in base ten (double) = ?

Number 0 - 100 0011 0100 - 1101 1000 1000 0000 0000 1000 1000 0000 0000 1000 1000 0000 0010 converted from 64 bit double precision IEEE 754 binary floating point standard representation to decimal system written in base ten (double) = ?

Convert 64 bit double precision IEEE 754 binary floating point standard numbers to base ten decimal system (double)



A number in 64 bit double precision IEEE 754 binary floating point standard representation...

... requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest 64 bit double precision IEEE 754 floating point binary standard numbers converted and written as decimal system numbers (in base ten, double)

The number 0 - 100 0011 0100 - 1101 1000 1000 0000 0000 1000 1000 0000 0000 1000 1000 0000 0001 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Oct 03 13:59 UTC (GMT)
The number 1 - 100 0000 0010 - 0011 1111 1010 1110 0001 0100 0111 1010 1110 0001 0110 0001 0101 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Oct 03 13:59 UTC (GMT)
The number 0 - 000 1111 1110 - 0000 0000 0000 0000 0000 0000 0000 0111 1111 1111 1111 1101 1000 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Oct 03 13:59 UTC (GMT)
The number 0 - 100 0001 0011 - 0111 1111 1111 1111 1111 1111 1111 1000 0000 1111 1111 1111 0100 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Oct 03 13:59 UTC (GMT)
The number 0 - 100 0001 0001 - 0101 0001 0010 1001 0111 0001 1101 1010 1110 1010 1101 1010 0100 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Oct 03 13:58 UTC (GMT)
The number 1 - 011 1111 1000 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0101 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Oct 03 13:58 UTC (GMT)
The number 1 - 100 0000 0110 - 1110 1001 1000 0000 0000 0000 0000 0000 0000 0000 0000 0010 1011 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Oct 03 13:58 UTC (GMT)
The number 0 - 100 0001 1001 - 0001 1000 0110 0011 1101 1100 1111 1101 1001 1011 1110 0101 0001 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Oct 03 13:58 UTC (GMT)
The number 0 - 010 0000 0111 - 0100 0000 1111 1010 1111 1011 1110 0111 1010 0100 0000 0001 1011 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Oct 03 13:58 UTC (GMT)
The number 0 - 100 0000 0010 - 1110 0011 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 0001 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Oct 03 13:58 UTC (GMT)
All 64 bit double precision IEEE 754 binary floating point representation numbers converted to base ten decimal numbers (double)

How to convert numbers from 64 bit double precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 64 bit double precision IEEE 754 binary floating point representation to base 10 decimal system:

Example: convert the number 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 from 64 bit double precision IEEE 754 binary floating point system to base ten decimal (double):

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal