64bit IEEE 754: Double Precision Floating Point Binary -> Double: 0 - 100 0010 0001 - 0110 0001 0101 1110 0001 0000 0000 0000 0000 0000 0000 0001 1011 The 64 Bit Double Precision IEEE 754 Binary Floating Point Standard Representation Number Converted and Written as a Base Ten Decimal System Number (Double)
0 - 100 0010 0001 - 0110 0001 0101 1110 0001 0000 0000 0000 0000 0000 0000 0001 1011: 64 bit double precision IEEE 754 binary floating point standard representation number converted to decimal system (base ten)
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 11 bits contain the exponent:
100 0010 0001
The last 52 bits contain the mantissa:
0110 0001 0101 1110 0001 0000 0000 0000 0000 0000 0000 0001 1011
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
100 0010 0001(2) =
1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 1 × 20 =
1,024 + 0 + 0 + 0 + 0 + 32 + 0 + 0 + 0 + 0 + 1 =
1,024 + 32 + 1 =
1,057(10)
3. Adjust the exponent.
Subtract the excess bits: 2(11 - 1) - 1 = 1023,
that is due to the 11 bit excess/bias notation.
The exponent, adjusted = 1,057 - 1023 = 34
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
0110 0001 0101 1110 0001 0000 0000 0000 0000 0000 0000 0001 1011(2) =
0 × 2-1 + 1 × 2-2 + 1 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 1 × 2-8 + 0 × 2-9 + 1 × 2-10 + 0 × 2-11 + 1 × 2-12 + 1 × 2-13 + 1 × 2-14 + 1 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 1 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 0 × 2-26 + 0 × 2-27 + 0 × 2-28 + 0 × 2-29 + 0 × 2-30 + 0 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 0 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 0 × 2-45 + 0 × 2-46 + 0 × 2-47 + 1 × 2-48 + 1 × 2-49 + 0 × 2-50 + 1 × 2-51 + 1 × 2-52 =
0 + 0.25 + 0.125 + 0 + 0 + 0 + 0 + 0.003 906 25 + 0 + 0.000 976 562 5 + 0 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0 + 0 + 0 + 0 + 0.000 000 953 674 316 406 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0.25 + 0.125 + 0.003 906 25 + 0.000 976 562 5 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 000 953 674 316 406 25 + 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0.380 341 529 846 197 401 454 332 975 845 318 287 611 007 690 429 687 5(10)
5. Put all the numbers into expression to calculate the double precision floating point decimal value:
(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =
(-1)0 × (1 + 0.380 341 529 846 197 401 454 332 975 845 318 287 611 007 690 429 687 5) × 234 =
1.380 341 529 846 197 401 454 332 975 845 318 287 611 007 690 429 687 5 × 234 =
23 714 086 912.000 102 996 826 171 875
0 - 100 0010 0001 - 0110 0001 0101 1110 0001 0000 0000 0000 0000 0000 0000 0001 1011 converted from a 64 bit double precision IEEE 754 binary floating point standard representation number to a decimal system number, written in base ten (double) = 23 714 086 912.000 102 996 826 171 875(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.
Convert 64 bit double precision IEEE 754 binary floating point standard numbers to base ten decimal system (double)
A number in 64 bit double precision IEEE 754 binary floating point standard representation...
... requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)