64 bit double precision IEEE 754 binary floating point number 0 - 100 0001 1100 - 1111 1111 1111 1111 1111 1111 1000 0000 0000 0000 0000 0000 0000 converted to decimal base ten (double)

How to convert 64 bit double precision IEEE 754 binary floating point:
0 - 100 0001 1100 - 1111 1111 1111 1111 1111 1111 1000 0000 0000 0000 0000 0000 0000.

1. Identify the elements that make up the binary representation of the number:

First bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.


The next 11 bits contain the exponent:
100 0001 1100


The last 52 bits contain the mantissa:
1111 1111 1111 1111 1111 1111 1000 0000 0000 0000 0000 0000 0000

2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):

100 0001 1100(2) =


1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 0 × 20 =


1,024 + 0 + 0 + 0 + 0 + 0 + 16 + 8 + 4 + 0 + 0 =


1,024 + 16 + 8 + 4 =


1,052(10)

3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1023, that is due to the 11 bit excess/bias notation:

Exponent adjusted = 1,052 - 1023 = 29

4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):

1111 1111 1111 1111 1111 1111 1000 0000 0000 0000 0000 0000 0000(2) =

1 × 2-1 + 1 × 2-2 + 1 × 2-3 + 1 × 2-4 + 1 × 2-5 + 1 × 2-6 + 1 × 2-7 + 1 × 2-8 + 1 × 2-9 + 1 × 2-10 + 1 × 2-11 + 1 × 2-12 + 1 × 2-13 + 1 × 2-14 + 1 × 2-15 + 1 × 2-16 + 1 × 2-17 + 1 × 2-18 + 1 × 2-19 + 1 × 2-20 + 1 × 2-21 + 1 × 2-22 + 1 × 2-23 + 1 × 2-24 + 1 × 2-25 + 0 × 2-26 + 0 × 2-27 + 0 × 2-28 + 0 × 2-29 + 0 × 2-30 + 0 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 0 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 0 × 2-45 + 0 × 2-46 + 0 × 2-47 + 0 × 2-48 + 0 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =


0.5 + 0.25 + 0.125 + 0.062 5 + 0.031 25 + 0.015 625 + 0.007 812 5 + 0.003 906 25 + 0.001 953 125 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 + 0.000 000 059 604 644 775 390 625 + 0.000 000 029 802 322 387 695 312 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 =


0.5 + 0.25 + 0.125 + 0.062 5 + 0.031 25 + 0.015 625 + 0.007 812 5 + 0.003 906 25 + 0.001 953 125 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 + 0.000 000 059 604 644 775 390 625 + 0.000 000 029 802 322 387 695 312 5 =


0.999 999 970 197 677 612 304 687 5(10)

Conclusion:

5. Put all the numbers into expression to calculate the double precision floating point decimal value:

(-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =


(-1)0 × (1 + 0.999 999 970 197 677 612 304 687 5) × 229 =


1.999 999 970 197 677 612 304 687 5 × 229 =


1 073 741 808

0 - 100 0001 1100 - 1111 1111 1111 1111 1111 1111 1000 0000 0000 0000 0000 0000 0000
converted from
64 bit double precision IEEE 754 binary floating point
to
base ten decimal system (double) =


1 073 741 808(10)

Convert 64 bit double precision IEEE 754 floating point standard binary numbers to base ten decimal system (double)

64 bit double precision IEEE 754 binary floating point standard representation of numbers requires three building blocks: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

Latest 64 bit double precision IEEE 754 floating point binary standard numbers converted to decimal base ten (double)

0 - 100 0001 1100 - 1111 1111 1111 1111 1111 1111 1000 0000 0000 0000 0000 0000 0000 = 1 073 741 808 Jul 18 15:05 UTC (GMT)
0 - 100 0000 0010 - 0010 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1101 = 9.400 000 000 000 000 355 271 367 880 050 092 935 562 133 789 062 5 Jul 18 15:04 UTC (GMT)
0 - 110 0101 0110 - 1100 0110 1001 0110 0001 0111 0011 0010 0000 0011 0000 0011 0001 = 3 684 204 870 510 636 558 931 979 970 881 447 794 220 096 953 796 727 533 268 637 489 160 945 120 033 697 995 116 093 422 234 431 107 393 634 820 732 689 918 921 340 846 997 331 637 005 419 926 392 810 872 188 403 887 425 705 830 716 014 592 Jul 18 15:03 UTC (GMT)
0 - 101 0111 1000 - 1010 1100 0000 1000 0011 0001 0010 0110 1110 1001 1000 0000 0000 = 514 688 705 940 410 723 816 992 583 622 862 906 376 836 083 775 428 322 859 314 903 866 331 890 602 035 686 883 147 983 517 743 043 629 263 028 748 288 Jul 18 14:59 UTC (GMT)
0 - 011 1111 1011 - 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 0.093 75 Jul 18 14:59 UTC (GMT)
1 - 100 0000 0101 - 0101 0001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -84.25 Jul 18 14:55 UTC (GMT)
0 - 100 0001 1010 - 0001 0100 1010 1010 1101 0111 0010 0100 1110 0111 0001 1010 0000 = 145 053 369.153 210 639 953 613 281 25 Jul 18 14:55 UTC (GMT)
0 - 100 0000 1000 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 512 Jul 18 14:55 UTC (GMT)
0 - 100 1111 1000 - 0010 0010 1010 0101 0111 0000 0000 0000 0000 0000 0000 0000 0000 = 1 027 054 912 893 957 238 951 480 025 276 823 649 976 520 420 869 025 872 361 970 996 952 269 062 144 Jul 18 14:54 UTC (GMT)
1 - 100 1010 0000 - 1011 1010 1010 0100 1000 0000 0000 0000 0000 0100 0001 0010 1011 = -5 054 084 786 589 418 600 497 031 505 450 962 896 967 406 977 024 Jul 18 14:53 UTC (GMT)
1 - 100 0000 0011 - 1000 0110 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -24.375 Jul 18 14:51 UTC (GMT)
0 - 111 0001 1101 - 1000 0011 0010 0111 0001 0011 1101 0011 1010 0011 0100 1110 0100 = 2 521 034 602 669 241 366 681 377 912 186 086 144 851 987 860 522 523 517 109 875 209 031 745 478 149 764 037 312 939 816 133 581 019 723 343 625 738 907 731 413 796 005 902 270 637 890 146 953 682 502 341 199 368 960 463 705 533 536 510 026 225 397 145 483 402 097 856 695 298 300 563 878 358 258 880 315 964 254 060 544 Jul 18 14:50 UTC (GMT)
0 - 111 1111 1110 - 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1000 0000 0000 = 179 769 313 486 190 715 963 391 248 017 159 750 848 634 703 440 397 595 871 616 362 987 282 703 637 975 849 033 163 000 938 340 260 081 986 824 700 713 083 624 347 420 706 511 820 066 962 845 129 841 302 186 139 339 020 077 377 331 560 120 181 366 591 014 946 917 902 398 107 505 028 092 022 422 779 079 466 475 792 235 115 262 793 407 452 694 740 240 552 403 774 430 454 746 880 802 853 038 884 300 901 056 512 Jul 18 14:50 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from 64 bit double precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 64 bit double precision IEEE 754 binary floating point representation to base 10 decimal system:

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent.
    The last 52 bits contain the mantissa.
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10).
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation.
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10).
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted)

Example: convert the number 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 from 64 bit double precision IEEE 754 binary floating point system to base ten decimal (double):

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent: 100 0011 1101
    The last 52 bits contain the mantissa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1,024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1,024 + 32 + 16 + 8 + 4 + 1 =
    1,085(10)
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation:
    Exponent adjusted = 1,085 - 1,023 = 62
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0.5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 488 281 25 + 0 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0.5 + 0.000 488 281 25 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =
    (-1)1 × (1 + 0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 converted from 64 bit double precision IEEE 754 binary floating point representation to a decimal number (float) in decimal system (in base 10) = -6 919 868 872 153 800 704(10)