64 bit double precision IEEE 754 binary floating point number 0 - 100 0001 1011 - 1011 0010 1001 1001 1000 0111 1110 0100 0111 1111 1101 1001 1111 converted to decimal base ten (double)

How to convert 64 bit double precision IEEE 754 binary floating point:
0 - 100 0001 1011 - 1011 0010 1001 1001 1000 0111 1110 0100 0111 1111 1101 1001 1111.

1. Identify the elements that make up the binary representation of the number:

First bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.


The next 11 bits contain the exponent:
100 0001 1011


The last 52 bits contain the mantissa:
1011 0010 1001 1001 1000 0111 1110 0100 0111 1111 1101 1001 1111

2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):

100 0001 1011(2) =


1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 1 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 1 × 20 =


1,024 + 0 + 0 + 0 + 0 + 0 + 16 + 8 + 0 + 2 + 1 =


1,024 + 16 + 8 + 2 + 1 =


1,051(10)

3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1023, that is due to the 11 bit excess/bias notation:

Exponent adjusted = 1,051 - 1023 = 28

4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):

1011 0010 1001 1001 1000 0111 1110 0100 0111 1111 1101 1001 1111(2) =

1 × 2-1 + 0 × 2-2 + 1 × 2-3 + 1 × 2-4 + 0 × 2-5 + 0 × 2-6 + 1 × 2-7 + 0 × 2-8 + 1 × 2-9 + 0 × 2-10 + 0 × 2-11 + 1 × 2-12 + 1 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 1 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 1 × 2-22 + 1 × 2-23 + 1 × 2-24 + 1 × 2-25 + 1 × 2-26 + 1 × 2-27 + 0 × 2-28 + 0 × 2-29 + 1 × 2-30 + 0 × 2-31 + 0 × 2-32 + 0 × 2-33 + 1 × 2-34 + 1 × 2-35 + 1 × 2-36 + 1 × 2-37 + 1 × 2-38 + 1 × 2-39 + 1 × 2-40 + 1 × 2-41 + 1 × 2-42 + 0 × 2-43 + 1 × 2-44 + 1 × 2-45 + 0 × 2-46 + 0 × 2-47 + 1 × 2-48 + 1 × 2-49 + 1 × 2-50 + 1 × 2-51 + 1 × 2-52 =


0.5 + 0 + 0.125 + 0.062 5 + 0 + 0 + 0.007 812 5 + 0 + 0.001 953 125 + 0 + 0 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0 + 0 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0 + 0 + 0 + 0 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 + 0.000 000 059 604 644 775 390 625 + 0.000 000 029 802 322 387 695 312 5 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 007 450 580 596 923 828 125 + 0 + 0 + 0.000 000 000 931 322 574 615 478 515 625 + 0 + 0 + 0 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0 + 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =


0.5 + 0.125 + 0.062 5 + 0.007 812 5 + 0.001 953 125 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 + 0.000 000 059 604 644 775 390 625 + 0.000 000 029 802 322 387 695 312 5 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 007 450 580 596 923 828 125 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =


0.697 655 194 555 274 027 479 185 861 011 501 401 662 826 538 085 937 5(10)

Conclusion:

5. Put all the numbers into expression to calculate the double precision floating point decimal value:

(-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =


(-1)0 × (1 + 0.697 655 194 555 274 027 479 185 861 011 501 401 662 826 538 085 937 5) × 228 =


1.697 655 194 555 274 027 479 185 861 011 501 401 662 826 538 085 937 5 × 228 =


455 710 846.281 213 700 771 331 787 109 375

0 - 100 0001 1011 - 1011 0010 1001 1001 1000 0111 1110 0100 0111 1111 1101 1001 1111
converted from
64 bit double precision IEEE 754 binary floating point
to
base ten decimal system (double) =


455 710 846.281 213 700 771 331 787 109 375(10)

Convert 64 bit double precision IEEE 754 floating point standard binary numbers to base ten decimal system (double)

64 bit double precision IEEE 754 binary floating point standard representation of numbers requires three building blocks: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

Latest 64 bit double precision IEEE 754 floating point binary standard numbers converted to decimal base ten (double)

0 - 100 0001 1011 - 1011 0010 1001 1001 1000 0111 1110 0100 0111 1111 1101 1001 1111 = 455 710 846.281 213 700 771 331 787 109 375 Oct 15 04:41 UTC (GMT)
0 - 011 1111 1100 - 0100 1000 1011 0100 0011 1001 0101 1000 0001 0000 0110 0000 0000 = 0.160 499 999 999 998 976 818 460 505 455 732 345 581 054 687 5 Oct 15 04:37 UTC (GMT)
0 - 011 1111 1110 - 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0111 = 0.666 666 666 666 666 851 703 837 437 526 090 070 605 278 015 136 718 75 Oct 15 04:36 UTC (GMT)
0 - 001 1111 1110 - 0110 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 051 276 092 527 001 421 360 125 386 543 807 670 131 963 241 800 377 797 398 116 688 540 793 163 897 357 063 346 436 202 371 502 941 148 110 392 272 383 873 197 492 212 505 654 673 955 790 842 383 203 445 5 Oct 15 04:36 UTC (GMT)
0 - 100 0000 0011 - 1011 1001 0001 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 27.568 359 375 Oct 15 04:36 UTC (GMT)
0 - 100 0000 0010 - 1000 0111 0101 1100 0010 1000 1111 0101 1100 0010 1000 1111 0101 = 12.229 999 999 999 998 649 968 802 055 809 646 844 863 891 601 562 5 Oct 15 04:34 UTC (GMT)
0 - 011 1111 1100 - 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 = 0.199 999 999 999 999 983 346 654 630 622 651 893 645 524 978 637 695 312 5 Oct 15 04:33 UTC (GMT)
0 - 100 0000 0111 - 0101 1111 0111 0001 0001 1110 1011 1000 0101 1001 1110 1011 1001 = 351.441 875 001 862 683 802 755 782 380 700 111 389 160 156 25 Oct 15 04:30 UTC (GMT)
1 - 100 0000 0011 - 1011 0011 1000 1110 0011 1000 1110 0011 1000 1110 0011 1000 1110 = -27.222 222 222 222 221 432 730 293 599 888 682 365 417 480 468 75 Oct 15 04:28 UTC (GMT)
0 - 100 0111 0000 - 0111 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 15 252 372 021 946 056 158 808 332 967 084 032 Oct 15 04:26 UTC (GMT)
0 - 011 1111 1000 - 0100 0111 1010 1110 0001 0100 0111 1010 1110 0001 0100 0111 1011 = 0.010 000 000 000 000 000 208 166 817 117 216 851 329 430 937 767 028 808 593 75 Oct 15 04:24 UTC (GMT)
0 - 111 1110 1111 - 0001 0011 1110 0010 0001 0000 0000 0000 0000 0000 0000 0000 0000 = 2 956 110 697 672 861 912 148 868 234 042 080 239 172 770 949 973 271 412 311 436 725 134 519 003 269 157 574 051 261 114 341 250 455 355 884 154 068 053 355 263 568 120 982 183 036 227 062 984 471 979 531 104 545 343 865 528 211 187 854 630 483 883 975 940 095 581 091 565 927 519 170 293 533 819 619 666 289 283 586 541 336 465 918 831 787 043 487 771 806 804 964 828 387 354 407 163 236 972 025 085 952 Oct 15 04:24 UTC (GMT)
0 - 111 1111 1111 - 0101 1110 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = SNaN, Signalling Not a Number Oct 15 04:22 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from 64 bit double precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 64 bit double precision IEEE 754 binary floating point representation to base 10 decimal system:

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent.
    The last 52 bits contain the mantissa.
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10).
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation.
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10).
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted)

Example: convert the number 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 from 64 bit double precision IEEE 754 binary floating point system to base ten decimal (double):

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent: 100 0011 1101
    The last 52 bits contain the mantissa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1,024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1,024 + 32 + 16 + 8 + 4 + 1 =
    1,085(10)
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation:
    Exponent adjusted = 1,085 - 1,023 = 62
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0.5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 488 281 25 + 0 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0.5 + 0.000 488 281 25 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =
    (-1)1 × (1 + 0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 converted from 64 bit double precision IEEE 754 binary floating point representation to a decimal number (float) in decimal system (in base 10) = -6 919 868 872 153 800 704(10)