64 Bit IEEE 754 Binary to Double: Convert 0 - 100 0001 1010 - 1001 1010 0110 0010 1010 0101 0010 0111 0011 0100 0100 0000 0111, Number Written in 64 Bit Double Precision IEEE 754 Binary Floating Point Standard Representation, to a Base Ten Decimal System Double
0 - 100 0001 1010 - 1001 1010 0110 0010 1010 0101 0010 0111 0011 0100 0100 0000 0111: 64 bit double precision IEEE 754 binary floating point standard representation number converted to a base ten decimal system double
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 11 bits contain the exponent:
100 0001 1010
The last 52 bits contain the mantissa:
1001 1010 0110 0010 1010 0101 0010 0111 0011 0100 0100 0000 0111
1. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
100 0001 1010(2) =
1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 1 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 0 × 20 =
1,024 + 0 + 0 + 0 + 0 + 0 + 16 + 8 + 0 + 2 + 0 =
1,024 + 16 + 8 + 2 =
1,050(10)
2. Adjust the exponent.
Subtract the excess bits: 2(11 - 1) - 1 = 1023,
that is due to the 11 bit excess/bias notation.
The exponent, adjusted = 1,050 - 1023 = 27
2. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
1001 1010 0110 0010 1010 0101 0010 0111 0011 0100 0100 0000 0111(2) =
1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 1 × 2-4 + 1 × 2-5 + 0 × 2-6 + 1 × 2-7 + 0 × 2-8 + 0 × 2-9 + 1 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 1 × 2-15 + 0 × 2-16 + 1 × 2-17 + 0 × 2-18 + 1 × 2-19 + 0 × 2-20 + 0 × 2-21 + 1 × 2-22 + 0 × 2-23 + 1 × 2-24 + 0 × 2-25 + 0 × 2-26 + 1 × 2-27 + 0 × 2-28 + 0 × 2-29 + 1 × 2-30 + 1 × 2-31 + 1 × 2-32 + 0 × 2-33 + 0 × 2-34 + 1 × 2-35 + 1 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 1 × 2-42 + 0 × 2-43 + 0 × 2-44 + 0 × 2-45 + 0 × 2-46 + 0 × 2-47 + 0 × 2-48 + 0 × 2-49 + 1 × 2-50 + 1 × 2-51 + 1 × 2-52 =
0.5 + 0 + 0 + 0.062 5 + 0.031 25 + 0 + 0.007 812 5 + 0 + 0 + 0.000 976 562 5 + 0.000 488 281 25 + 0 + 0 + 0 + 0.000 030 517 578 125 + 0 + 0.000 007 629 394 531 25 + 0 + 0.000 001 907 348 632 812 5 + 0 + 0 + 0.000 000 238 418 579 101 562 5 + 0 + 0.000 000 059 604 644 775 390 625 + 0 + 0 + 0.000 000 007 450 580 596 923 828 125 + 0 + 0 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0 + 0 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0.5 + 0.062 5 + 0.031 25 + 0.007 812 5 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 030 517 578 125 + 0.000 007 629 394 531 25 + 0.000 001 907 348 632 812 5 + 0.000 000 238 418 579 101 562 5 + 0.000 000 059 604 644 775 390 625 + 0.000 000 007 450 580 596 923 828 125 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0.603 067 705 222 430 694 433 910 502 993 967 384 099 960 327 148 437 5(10)
3. Put all the numbers into expression to calculate the double precision floating point decimal value:
(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =
(-1)0 × (1 + 0.603 067 705 222 430 694 433 910 502 993 967 384 099 960 327 148 437 5) × 227 =
1.603 067 705 222 430 694 433 910 502 993 967 384 099 960 327 148 437 5 × 227 = ...
= 215 160 105.225 128 382 444 381 713 867 187 5
0 - 100 0001 1010 - 1001 1010 0110 0010 1010 0101 0010 0111 0011 0100 0100 0000 0111 converted from a 64 bit double precision IEEE 754 binary floating point standard representation number to a decimal system number, written in base ten (double) = 215 160 105.225 128 382 444 381 713 867 187 5(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.