64 bit double precision IEEE 754 binary floating point number 0 - 100 0001 0111 - 1011 1100 1010 1110 0000 0011 1010 1011 1011 1000 0010 0000 1110 converted to decimal base ten (double)

How to convert 64 bit double precision IEEE 754 binary floating point:
0 - 100 0001 0111 - 1011 1100 1010 1110 0000 0011 1010 1011 1011 1000 0010 0000 1110.

1. Identify the elements that make up the binary representation of the number:

First bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.


The next 11 bits contain the exponent:
100 0001 0111


The last 52 bits contain the mantissa:
1011 1100 1010 1110 0000 0011 1010 1011 1011 1000 0010 0000 1110

2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):

100 0001 0111(2) =


1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 1 × 20 =


1,024 + 0 + 0 + 0 + 0 + 0 + 16 + 0 + 4 + 2 + 1 =


1,024 + 16 + 4 + 2 + 1 =


1,047(10)

3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1023, that is due to the 11 bit excess/bias notation:

Exponent adjusted = 1,047 - 1023 = 24

4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):

1011 1100 1010 1110 0000 0011 1010 1011 1011 1000 0010 0000 1110(2) =

1 × 2-1 + 0 × 2-2 + 1 × 2-3 + 1 × 2-4 + 1 × 2-5 + 1 × 2-6 + 0 × 2-7 + 0 × 2-8 + 1 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 1 × 2-13 + 1 × 2-14 + 1 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 1 × 2-23 + 1 × 2-24 + 1 × 2-25 + 0 × 2-26 + 1 × 2-27 + 0 × 2-28 + 1 × 2-29 + 0 × 2-30 + 1 × 2-31 + 1 × 2-32 + 1 × 2-33 + 0 × 2-34 + 1 × 2-35 + 1 × 2-36 + 1 × 2-37 + 0 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 1 × 2-43 + 0 × 2-44 + 0 × 2-45 + 0 × 2-46 + 0 × 2-47 + 0 × 2-48 + 1 × 2-49 + 1 × 2-50 + 1 × 2-51 + 0 × 2-52 =


0.5 + 0 + 0.125 + 0.062 5 + 0.031 25 + 0.015 625 + 0 + 0 + 0.001 953 125 + 0 + 0.000 488 281 25 + 0 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 119 209 289 550 781 25 + 0.000 000 059 604 644 775 390 625 + 0.000 000 029 802 322 387 695 312 5 + 0 + 0.000 000 007 450 580 596 923 828 125 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0.000 000 000 116 415 321 826 934 814 453 125 + 0 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0 =


0.5 + 0.125 + 0.062 5 + 0.031 25 + 0.015 625 + 0.001 953 125 + 0.000 488 281 25 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 000 119 209 289 550 781 25 + 0.000 000 059 604 644 775 390 625 + 0.000 000 029 802 322 387 695 312 5 + 0.000 000 007 450 580 596 923 828 125 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0.000 000 000 116 415 321 826 934 814 453 125 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 =


0.737 030 248 092 313 211 571 990 905 213 169 753 551 483 154 296 875(10)

Conclusion:

5. Put all the numbers into expression to calculate the double precision floating point decimal value:

(-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =


(-1)0 × (1 + 0.737 030 248 092 313 211 571 990 905 213 169 753 551 483 154 296 875) × 224 =


1.737 030 248 092 313 211 571 990 905 213 169 753 551 483 154 296 875 × 224 =


29 142 531.670 778 326 690 196 990 966 796 875

0 - 100 0001 0111 - 1011 1100 1010 1110 0000 0011 1010 1011 1011 1000 0010 0000 1110
converted from
64 bit double precision IEEE 754 binary floating point
to
base ten decimal system (double) =


29 142 531.670 778 326 690 196 990 966 796 875(10)

Convert 64 bit double precision IEEE 754 floating point standard binary numbers to base ten decimal system (double)

64 bit double precision IEEE 754 binary floating point standard representation of numbers requires three building blocks: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

Latest 64 bit double precision IEEE 754 floating point binary standard numbers converted to decimal base ten (double)

0 - 100 0001 0111 - 1011 1100 1010 1110 0000 0011 1010 1011 1011 1000 0010 0000 1110 = 29 142 531.670 778 326 690 196 990 966 796 875 Jul 19 17:16 UTC (GMT)
1 - 100 0001 0111 - 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -16 842 752 Jul 19 17:16 UTC (GMT)
0 - 100 0001 1011 - 0011 1000 1101 0101 0010 0111 0100 0010 1011 0110 1100 1011 0101 = 328 028 788.169 627 487 659 454 345 703 125 Jul 19 17:15 UTC (GMT)
0 - 011 1111 1100 - 0001 1101 1000 1110 0111 1001 1010 1001 0010 1111 1000 0000 0000 = 0.139 431 906 200 059 074 762 975 797 057 151 794 433 593 75 Jul 19 17:15 UTC (GMT)
0 - 100 0001 0101 - 1110 1001 0111 1101 0011 1111 0000 1001 1011 0101 0010 1001 1001 = 8 019 791.759 480 142 034 590 244 293 212 890 625 Jul 19 17:10 UTC (GMT)
0 - 100 0001 0111 - 1011 1100 1010 1110 0000 0011 1010 1011 1011 1000 0010 0000 1110 = 29 142 531.670 778 326 690 196 990 966 796 875 Jul 19 17:05 UTC (GMT)
0 - 100 0001 1001 - 0001 1000 0110 0011 1101 1100 1111 1101 1001 1011 1101 1000 0010 = 73 502 579.962 636 977 434 158 325 195 312 5 Jul 19 17:05 UTC (GMT)
1 - 110 1100 0011 - 1010 1110 0101 0000 0110 1011 0111 1000 0101 1000 1111 1110 1001 = -2 263 510 856 040 996 890 909 801 068 763 326 089 028 066 175 995 255 913 456 035 973 820 496 488 671 254 857 797 234 006 032 254 568 777 973 261 002 270 304 016 658 858 056 665 537 667 789 867 898 119 566 812 543 029 850 169 515 689 129 266 333 676 802 108 436 854 718 131 651 739 648 Jul 19 17:04 UTC (GMT)
0 - 111 1000 0000 - 1111 1111 1111 1111 1111 1110 0000 0000 0000 0000 0000 0000 0000 = 2 113 177 998 587 429 524 917 881 566 190 279 998 454 356 942 435 052 047 459 615 308 497 655 105 133 824 983 417 292 905 268 011 209 393 584 651 898 574 447 185 581 947 496 056 997 379 265 499 426 735 188 201 380 023 646 494 953 175 352 073 895 772 387 226 398 328 293 731 483 071 628 069 487 212 556 813 449 446 114 307 867 957 563 139 780 526 761 113 026 560 Jul 19 17:01 UTC (GMT)
1 - 100 0000 0000 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -2 Jul 19 17:01 UTC (GMT)
1 - 110 0000 0000 - 1000 0010 0101 0011 1010 1010 0111 1101 0101 0111 1101 1010 1000 = -40 467 154 715 863 653 503 910 770 170 027 699 773 973 309 724 398 412 507 286 379 982 964 222 569 142 750 569 975 700 299 497 163 368 576 037 752 479 199 775 626 452 659 268 078 555 027 652 371 718 078 464 Jul 19 17:01 UTC (GMT)
0 - 100 0001 0100 - 1001 0000 0001 1101 1011 0010 1111 0111 1000 1100 0010 0100 0000 = 3 277 750.370 872 765 779 495 239 257 812 5 Jul 19 17:00 UTC (GMT)
1 - 000 0011 0101 - 1110 1010 1010 1111 1010 1010 0010 0101 0111 0100 0101 0101 0110 = -0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 192 073 776 688 369 1 Jul 19 17:00 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from 64 bit double precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 64 bit double precision IEEE 754 binary floating point representation to base 10 decimal system:

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent.
    The last 52 bits contain the mantissa.
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10).
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation.
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10).
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted)

Example: convert the number 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 from 64 bit double precision IEEE 754 binary floating point system to base ten decimal (double):

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent: 100 0011 1101
    The last 52 bits contain the mantissa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1,024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1,024 + 32 + 16 + 8 + 4 + 1 =
    1,085(10)
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation:
    Exponent adjusted = 1,085 - 1,023 = 62
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0.5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 488 281 25 + 0 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0.5 + 0.000 488 281 25 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =
    (-1)1 × (1 + 0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 converted from 64 bit double precision IEEE 754 binary floating point representation to a decimal number (float) in decimal system (in base 10) = -6 919 868 872 153 800 704(10)