The 64 Bit Double Precision IEEE 754 Binary Floating Point Standard Representation Number 0 - 100 0000 1010 - 1100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1110 Converted and Written as a Base Ten Decimal System Number (Double)

0 - 100 0000 1010 - 1100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1110: 64 bit double precision IEEE 754 binary floating point standard representation number converted to decimal system (base ten)

The steps we'll go through to make the conversion:

Convert the exponent from binary (from base 2) to decimal (in base 10).

Adjust the exponent.

Convert the mantissa from binary (from base 2) to decimal (in base 10).

1. Identify the elements that make up the binary representation of the number:

The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0


The next 11 bits contain the exponent:
100 0000 1010


The last 52 bits contain the mantissa:
1100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1110


2. Convert the exponent from binary (from base 2) to decimal (in base 10).

The exponent is allways a positive integer.

100 0000 1010(2) =


1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 0 × 20 =


1,024 + 0 + 0 + 0 + 0 + 0 + 0 + 8 + 0 + 2 + 0 =


1,024 + 8 + 2 =


1,034(10)

3. Adjust the exponent.

Subtract the excess bits: 2(11 - 1) - 1 = 1023,

that is due to the 11 bit excess/bias notation.


The exponent, adjusted = 1,034 - 1023 = 11


4. Convert the mantissa from binary (from base 2) to decimal (in base 10).

The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).


1100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1110(2) =

1 × 2-1 + 1 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 0 × 2-26 + 0 × 2-27 + 0 × 2-28 + 0 × 2-29 + 0 × 2-30 + 0 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 0 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 0 × 2-45 + 0 × 2-46 + 0 × 2-47 + 0 × 2-48 + 1 × 2-49 + 1 × 2-50 + 1 × 2-51 + 0 × 2-52 =


0.5 + 0.25 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0 =


0.5 + 0.25 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 =


0.750 000 000 000 003 108 624 468 950 438 313 186 168 670 654 296 875(10)

5. Put all the numbers into expression to calculate the double precision floating point decimal value:

(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =


(-1)0 × (1 + 0.750 000 000 000 003 108 624 468 950 438 313 186 168 670 654 296 875) × 211 =


1.750 000 000 000 003 108 624 468 950 438 313 186 168 670 654 296 875 × 211 =


3 584.000 000 000 006 366 462 912 410 497 665 405 273 437 5

0 - 100 0000 1010 - 1100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1110 converted from a 64 bit double precision IEEE 754 binary floating point standard representation number to a decimal system number, written in base ten (double) = 3 584.000 000 000 006 366 462 912 410 497 665 405 273 437 5(10)

Spaces were used to group digits: for binary, by 4, for decimal, by 3.

Number 0 - 100 0000 1010 - 1100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1101 converted from 64 bit double precision IEEE 754 binary floating point standard representation to decimal system written in base ten (double) = ?

Number 0 - 100 0000 1010 - 1100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1111 converted from 64 bit double precision IEEE 754 binary floating point standard representation to decimal system written in base ten (double) = ?

Convert 64 bit double precision IEEE 754 binary floating point standard numbers to base ten decimal system (double)



A number in 64 bit double precision IEEE 754 binary floating point standard representation...

... requires three building elements: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

The latest 64 bit double precision IEEE 754 floating point binary standard numbers converted and written as decimal system numbers (in base ten, double)

The number 0 - 100 0000 1010 - 1100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1110 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Oct 03 14:52 UTC (GMT)
The number 0 - 100 0000 1100 - 0000 0000 0000 0111 1111 1111 1111 1111 1111 1111 1111 1111 1001 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Oct 03 14:51 UTC (GMT)
The number 0 - 100 0000 1001 - 0001 0101 1101 1111 0000 1010 0011 1101 0111 0000 1000 0000 0011 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Oct 03 14:51 UTC (GMT)
The number 1 - 000 0000 0001 - 0110 0000 1111 1111 0101 0000 0000 0000 0000 0000 0000 0001 0011 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Oct 03 14:51 UTC (GMT)
The number 0 - 111 1111 0000 - 1111 1111 1111 1111 1111 1111 1111 1100 0000 0000 0000 0000 0000 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Oct 03 14:51 UTC (GMT)
The number 0 - 100 0001 0100 - 0110 1000 0100 0000 1011 1111 1111 1111 1111 1111 1111 1101 0110 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Oct 03 14:51 UTC (GMT)
The number 1 - 000 0000 0000 - 1110 0011 1101 0111 0000 1010 0011 1101 0111 0000 1010 0000 1001 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Oct 03 14:51 UTC (GMT)
The number 0 - 100 0100 0011 - 1101 1001 1101 0111 1000 0101 0100 0001 0100 0000 1010 1001 1001 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Oct 03 14:51 UTC (GMT)
The number 0 - 100 0010 0001 - 1110 1101 0100 0111 1010 1110 0001 0100 0111 1010 1110 0000 0011 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Oct 03 14:51 UTC (GMT)
The number 0 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1010 converted from 64 bit double precision IEEE 754 binary floating point system and written as a decimal number (double) written in base ten = ? Oct 03 14:50 UTC (GMT)
All 64 bit double precision IEEE 754 binary floating point representation numbers converted to base ten decimal numbers (double)

How to convert numbers from 64 bit double precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 64 bit double precision IEEE 754 binary floating point representation to base 10 decimal system:

Example: convert the number 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 from 64 bit double precision IEEE 754 binary floating point system to base ten decimal (double):

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal