64 Bit IEEE 754 Binary to Double: Convert 0 - 100 0000 0111 - 1001 1110 1110 0110 1110 0001 0100 0111 1010 1110 0001 0011 0001, Number Written in 64 Bit Double Precision IEEE 754 Binary Floating Point Standard Representation, to a Base Ten Decimal System Double
0 - 100 0000 0111 - 1001 1110 1110 0110 1110 0001 0100 0111 1010 1110 0001 0011 0001: 64 bit double precision IEEE 754 binary floating point standard representation number converted to a base ten decimal system double
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 11 bits contain the exponent:
100 0000 0111
The last 52 bits contain the mantissa:
1001 1110 1110 0110 1110 0001 0100 0111 1010 1110 0001 0011 0001
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
100 0000 0111(2) =
1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 1 × 20 =
1,024 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 4 + 2 + 1 =
1,024 + 4 + 2 + 1 =
1,031(10)
3. Adjust the exponent.
Subtract the excess bits: 2(11 - 1) - 1 = 1023,
that is due to the 11 bit excess/bias notation.
The exponent, adjusted = 1,031 - 1023 = 8
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
1001 1110 1110 0110 1110 0001 0100 0111 1010 1110 0001 0011 0001(2) =
1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 1 × 2-4 + 1 × 2-5 + 1 × 2-6 + 1 × 2-7 + 0 × 2-8 + 1 × 2-9 + 1 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 1 × 2-14 + 1 × 2-15 + 0 × 2-16 + 1 × 2-17 + 1 × 2-18 + 1 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 1 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 0 × 2-29 + 1 × 2-30 + 1 × 2-31 + 1 × 2-32 + 1 × 2-33 + 0 × 2-34 + 1 × 2-35 + 0 × 2-36 + 1 × 2-37 + 1 × 2-38 + 1 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 1 × 2-44 + 0 × 2-45 + 0 × 2-46 + 1 × 2-47 + 1 × 2-48 + 0 × 2-49 + 0 × 2-50 + 0 × 2-51 + 1 × 2-52 =
0.5 + 0 + 0 + 0.062 5 + 0.031 25 + 0.015 625 + 0.007 812 5 + 0 + 0.001 953 125 + 0.000 976 562 5 + 0.000 488 281 25 + 0 + 0 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0 + 0 + 0 + 0 + 0.000 000 059 604 644 775 390 625 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0.000 000 000 116 415 321 826 934 814 453 125 + 0 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0 + 0 + 0 + 0 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0 + 0 + 0 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0.5 + 0.062 5 + 0.031 25 + 0.015 625 + 0.007 812 5 + 0.001 953 125 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0.000 000 059 604 644 775 390 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0.000 000 000 116 415 321 826 934 814 453 125 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0.620 710 449 218 744 964 028 360 300 289 932 638 406 753 540 039 062 5(10)
5. Put all the numbers into expression to calculate the double precision floating point decimal value:
(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =
(-1)0 × (1 + 0.620 710 449 218 744 964 028 360 300 289 932 638 406 753 540 039 062 5) × 28 =
1.620 710 449 218 744 964 028 360 300 289 932 638 406 753 540 039 062 5 × 28 =
414.901 874 999 998 710 791 260 236 874 222 755 432 128 906 25
0 - 100 0000 0111 - 1001 1110 1110 0110 1110 0001 0100 0111 1010 1110 0001 0011 0001 converted from a 64 bit double precision IEEE 754 binary floating point standard representation number to a decimal system number, written in base ten (double) = 414.901 874 999 998 710 791 260 236 874 222 755 432 128 906 25(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.