64 bit double precision IEEE 754 binary floating point number 0 - 100 0000 0101 - 0111 1000 1110 1111 0011 0100 1101 0110 1010 0001 0110 0010 0101 converted to decimal base ten (double)

How to convert 64 bit double precision IEEE 754 binary floating point:
0 - 100 0000 0101 - 0111 1000 1110 1111 0011 0100 1101 0110 1010 0001 0110 0010 0101.

1. Identify the elements that make up the binary representation of the number:

First bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.


The next 11 bits contain the exponent:
100 0000 0101


The last 52 bits contain the mantissa:
0111 1000 1110 1111 0011 0100 1101 0110 1010 0001 0110 0010 0101

2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):

100 0000 0101(2) =


1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =


1,024 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 4 + 0 + 1 =


1,024 + 4 + 1 =


1,029(10)

3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1023, that is due to the 11 bit excess/bias notation:

Exponent adjusted = 1,029 - 1023 = 6

4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):

0111 1000 1110 1111 0011 0100 1101 0110 1010 0001 0110 0010 0101(2) =

0 × 2-1 + 1 × 2-2 + 1 × 2-3 + 1 × 2-4 + 1 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 1 × 2-9 + 1 × 2-10 + 1 × 2-11 + 0 × 2-12 + 1 × 2-13 + 1 × 2-14 + 1 × 2-15 + 1 × 2-16 + 0 × 2-17 + 0 × 2-18 + 1 × 2-19 + 1 × 2-20 + 0 × 2-21 + 1 × 2-22 + 0 × 2-23 + 0 × 2-24 + 1 × 2-25 + 1 × 2-26 + 0 × 2-27 + 1 × 2-28 + 0 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 1 × 2-33 + 0 × 2-34 + 1 × 2-35 + 0 × 2-36 + 0 × 2-37 + 0 × 2-38 + 0 × 2-39 + 1 × 2-40 + 0 × 2-41 + 1 × 2-42 + 1 × 2-43 + 0 × 2-44 + 0 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 0 × 2-49 + 1 × 2-50 + 0 × 2-51 + 1 × 2-52 =


0 + 0.25 + 0.125 + 0.062 5 + 0.031 25 + 0 + 0 + 0 + 0.001 953 125 + 0.000 976 562 5 + 0.000 488 281 25 + 0 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0 + 0 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0 + 0.000 000 238 418 579 101 562 5 + 0 + 0 + 0.000 000 029 802 322 387 695 312 5 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0.000 000 003 725 290 298 461 914 062 5 + 0 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0.000 000 000 116 415 321 826 934 814 453 125 + 0 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0 + 0 + 0 + 0 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0 + 0 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =


0.25 + 0.125 + 0.062 5 + 0.031 25 + 0.001 953 125 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0.000 000 238 418 579 101 562 5 + 0.000 000 029 802 322 387 695 312 5 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 003 725 290 298 461 914 062 5 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 116 415 321 826 934 814 453 125 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =


0.472 400 000 000 001 485 389 589 106 489 438 563 585 281 372 070 312 5(10)

Conclusion:

5. Put all the numbers into expression to calculate the double precision floating point decimal value:

(-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =


(-1)0 × (1 + 0.472 400 000 000 001 485 389 589 106 489 438 563 585 281 372 070 312 5) × 26 =


1.472 400 000 000 001 485 389 589 106 489 438 563 585 281 372 070 312 5 × 26 =


94.233 600 000 000 095 064 933 702 815 324 068 069 458 007 812 5

0 - 100 0000 0101 - 0111 1000 1110 1111 0011 0100 1101 0110 1010 0001 0110 0010 0101
converted from
64 bit double precision IEEE 754 binary floating point
to
base ten decimal system (double) =


94.233 600 000 000 095 064 933 702 815 324 068 069 458 007 812 5(10)

Convert 64 bit double precision IEEE 754 floating point standard binary numbers to base ten decimal system (double)

64 bit double precision IEEE 754 binary floating point standard representation of numbers requires three building blocks: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

Latest 64 bit double precision IEEE 754 floating point binary standard numbers converted to decimal base ten (double)

0 - 100 0000 0101 - 0111 1000 1110 1111 0011 0100 1101 0110 1010 0001 0110 0010 0101 = 94.233 600 000 000 095 064 933 702 815 324 068 069 458 007 812 5 Jun 27 12:35 UTC (GMT)
0 - 100 0000 0101 - 0111 1101 0111 0000 1010 0011 1101 0111 0000 1010 0011 1101 0111 = 95.359 999 999 999 999 431 565 811 391 919 851 303 100 585 937 5 Jun 27 12:34 UTC (GMT)
0 - 100 0001 1011 - 0111 0010 1110 0100 0110 1011 0101 1010 0101 1101 0000 1111 1111 = 388 908 725.647 720 277 309 417 724 609 375 Jun 27 12:29 UTC (GMT)
1 - 100 0000 0001 - 1000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -6.125 Jun 27 12:26 UTC (GMT)
1 - 110 0000 0111 - 0101 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -4 612 285 927 900 253 402 253 464 599 382 811 067 852 901 842 283 783 321 936 905 136 640 286 826 345 300 160 019 844 758 569 414 779 125 370 959 216 151 201 493 691 335 687 309 620 061 573 175 258 092 929 024 Jun 27 12:25 UTC (GMT)
0 - 100 0000 0001 - 1110 0100 1010 1000 1001 0100 1010 0101 0011 0001 1001 0100 1100 = 7.572 789 346 048 306 668 990 335 310 809 314 250 946 044 921 875 Jun 27 12:24 UTC (GMT)
0 - 100 0011 0010 - 1011 0110 0011 0111 0101 0101 0011 0010 1011 0010 1011 0100 0000 = 3 854 589 964 424 608 Jun 27 12:20 UTC (GMT)
1 - 100 0100 0000 - 1000 0000 0000 1011 1100 0000 0111 0000 1000 0000 0011 1110 0000 = -55 346 847 849 457 123 328 Jun 27 12:20 UTC (GMT)
0 - 100 0001 1110 - 1010 1101 1100 1001 0110 1001 1010 1000 1000 0000 0000 0000 0000 = 3 605 312 724.25 Jun 27 12:17 UTC (GMT)
0 - 100 0000 0110 - 0000 1101 0111 1111 1000 1010 0000 1001 0000 0010 1101 1110 0000 = 134.749 099 999 999 998 544 808 477 163 314 819 335 937 5 Jun 27 12:16 UTC (GMT)
0 - 111 0010 0110 - 0101 0111 0011 0111 0011 0110 0001 0100 1110 0110 1000 0100 0001 = 1 144 283 517 142 482 188 112 020 266 720 057 419 136 298 954 335 226 472 190 306 906 372 871 084 264 114 568 379 010 961 296 102 317 094 940 241 499 474 946 985 053 109 511 587 646 001 110 865 029 627 005 804 607 780 259 462 420 924 572 488 588 619 024 838 453 814 155 236 534 054 031 332 999 004 074 641 232 794 316 963 840 Jun 27 12:15 UTC (GMT)
0 - 100 0000 0100 - 0000 1010 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 = 33.299 999 999 999 997 157 829 056 959 599 256 515 502 929 687 5 Jun 27 12:14 UTC (GMT)
1 - 001 1100 1010 - 0001 0010 0110 0011 1000 0010 1010 1111 0101 0010 1010 1000 0010 = -0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 008 875 211 820 572 695 813 069 047 300 613 450 510 924 939 408 779 443 573 984 089 832 837 231 020 510 661 803 816 909 126 079 835 794 628 468 908 489 218 271 729 262 170 985 456 921 5 Jun 27 12:14 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from 64 bit double precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 64 bit double precision IEEE 754 binary floating point representation to base 10 decimal system:

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent.
    The last 52 bits contain the mantissa.
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10).
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation.
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10).
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted)

Example: convert the number 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 from 64 bit double precision IEEE 754 binary floating point system to base ten decimal (double):

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent: 100 0011 1101
    The last 52 bits contain the mantissa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1,024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1,024 + 32 + 16 + 8 + 4 + 1 =
    1,085(10)
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation:
    Exponent adjusted = 1,085 - 1,023 = 62
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0.5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 488 281 25 + 0 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0.5 + 0.000 488 281 25 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =
    (-1)1 × (1 + 0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 converted from 64 bit double precision IEEE 754 binary floating point representation to a decimal number (float) in decimal system (in base 10) = -6 919 868 872 153 800 704(10)