Convert 0 - 100 0000 0101 - 0100 1001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0100 1110, 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, to Decimal
0 - 100 0000 0101 - 0100 1001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0100 1110: 64 bit double precision IEEE 754 binary floating point representation standard converted to decimal
What are the steps to convert
0 - 100 0000 0101 - 0100 1001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0100 1110, a 64 bit double precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 11 bits contain the exponent:
100 0000 0101
The last 52 bits contain the mantissa:
0100 1001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0100 1110
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
100 0000 0101(2) =
1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
1,024 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 4 + 0 + 1 =
1,024 + 4 + 1 =
1,029(10)
3. Adjust the exponent.
Subtract the excess bits: 2(11 - 1) - 1 = 1023,
that is due to the 11 bit excess/bias notation.
The exponent, adjusted = 1,029 - 1023 = 6
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
0100 1001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0100 1110(2) =
0 × 2-1 + 1 × 2-2 + 0 × 2-3 + 0 × 2-4 + 1 × 2-5 + 0 × 2-6 + 0 × 2-7 + 1 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 0 × 2-26 + 0 × 2-27 + 0 × 2-28 + 0 × 2-29 + 0 × 2-30 + 0 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 0 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 0 × 2-45 + 1 × 2-46 + 0 × 2-47 + 0 × 2-48 + 1 × 2-49 + 1 × 2-50 + 1 × 2-51 + 0 × 2-52 =
0 + 0.25 + 0 + 0 + 0.031 25 + 0 + 0 + 0.003 906 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0 =
0.25 + 0.031 25 + 0.003 906 25 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 =
0.285 156 250 000 017 319 479 184 152 442 030 608 654 022 216 796 875(10)
5. Put all the numbers into expression to calculate the double precision floating point decimal value:
(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =
(-1)0 × (1 + 0.285 156 250 000 017 319 479 184 152 442 030 608 654 022 216 796 875) × 26 =
1.285 156 250 000 017 319 479 184 152 442 030 608 654 022 216 796 875 × 26 = ...
= 82.250 000 000 001 108 446 667 785 756 289 958 953 857 421 875
0 - 100 0000 0101 - 0100 1001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0100 1110, a 64 bit double precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (double) = 82.250 000 000 001 108 446 667 785 756 289 958 953 857 421 875(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.