64 Bit IEEE 754 Binary to Double: Convert 0 - 100 0000 0011 - 1000 1101 1111 0110 0001 0110 0111 0010 0011 0010 0100 1000 0010, Number Written in 64 Bit Double Precision IEEE 754 Binary Floating Point Standard Representation, to a Base Ten Decimal System Double
0 - 100 0000 0011 - 1000 1101 1111 0110 0001 0110 0111 0010 0011 0010 0100 1000 0010: 64 bit double precision IEEE 754 binary floating point standard representation number converted to a base ten decimal system double
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 11 bits contain the exponent:
100 0000 0011
The last 52 bits contain the mantissa:
1000 1101 1111 0110 0001 0110 0111 0010 0011 0010 0100 1000 0010
1. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
100 0000 0011(2) =
1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 1 × 20 =
1,024 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 2 + 1 =
1,024 + 2 + 1 =
1,027(10)
2. Adjust the exponent.
Subtract the excess bits: 2(11 - 1) - 1 = 1023,
that is due to the 11 bit excess/bias notation.
The exponent, adjusted = 1,027 - 1023 = 4
2. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
1000 1101 1111 0110 0001 0110 0111 0010 0011 0010 0100 1000 0010(2) =
1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 1 × 2-5 + 1 × 2-6 + 0 × 2-7 + 1 × 2-8 + 1 × 2-9 + 1 × 2-10 + 1 × 2-11 + 1 × 2-12 + 0 × 2-13 + 1 × 2-14 + 1 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 1 × 2-20 + 0 × 2-21 + 1 × 2-22 + 1 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 1 × 2-27 + 1 × 2-28 + 0 × 2-29 + 0 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 1 × 2-35 + 1 × 2-36 + 0 × 2-37 + 0 × 2-38 + 1 × 2-39 + 0 × 2-40 + 0 × 2-41 + 1 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 0 × 2-47 + 0 × 2-48 + 0 × 2-49 + 0 × 2-50 + 1 × 2-51 + 0 × 2-52 =
0.5 + 0 + 0 + 0 + 0.031 25 + 0.015 625 + 0 + 0.003 906 25 + 0.001 953 125 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 244 140 625 + 0 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0 + 0 + 0 + 0 + 0.000 000 953 674 316 406 25 + 0 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 007 450 580 596 923 828 125 + 0.000 000 003 725 290 298 461 914 062 5 + 0 + 0 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0 + 0 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0 + 0 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0 =
0.5 + 0.031 25 + 0.015 625 + 0.003 906 25 + 0.001 953 125 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 000 953 674 316 406 25 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 007 450 580 596 923 828 125 + 0.000 000 003 725 290 298 461 914 062 5 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 =
0.554 536 249 999 984 409 697 617 593 337 781 727 313 995 361 328 125(10)
3. Put all the numbers into expression to calculate the double precision floating point decimal value:
(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =
(-1)0 × (1 + 0.554 536 249 999 984 409 697 617 593 337 781 727 313 995 361 328 125) × 24 =
1.554 536 249 999 984 409 697 617 593 337 781 727 313 995 361 328 125 × 24 = ...
= 24.872 579 999 999 750 555 161 881 493 404 507 637 023 925 781 25
0 - 100 0000 0011 - 1000 1101 1111 0110 0001 0110 0111 0010 0011 0010 0100 1000 0010 converted from a 64 bit double precision IEEE 754 binary floating point standard representation number to a decimal system number, written in base ten (double) = 24.872 579 999 999 750 555 161 881 493 404 507 637 023 925 781 25(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.