64 Bit IEEE 754 Binary to Double: Convert 0 - 100 0000 0010 - 1100 1011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0110 0100, Number Written in 64 Bit Double Precision IEEE 754 Binary Floating Point Standard Representation, to a Base Ten Decimal System Double
0 - 100 0000 0010 - 1100 1011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0110 0100: 64 bit double precision IEEE 754 binary floating point standard representation number converted to a base ten decimal system double
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 11 bits contain the exponent:
100 0000 0010
The last 52 bits contain the mantissa:
1100 1011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0110 0100
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
100 0000 0010(2) =
1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 0 × 20 =
1,024 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 2 + 0 =
1,024 + 2 =
1,026(10)
3. Adjust the exponent.
Subtract the excess bits: 2(11 - 1) - 1 = 1023,
that is due to the 11 bit excess/bias notation.
The exponent, adjusted = 1,026 - 1023 = 3
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
1100 1011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0110 0100(2) =
1 × 2-1 + 1 × 2-2 + 0 × 2-3 + 0 × 2-4 + 1 × 2-5 + 0 × 2-6 + 1 × 2-7 + 1 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 1 × 2-12 + 0 × 2-13 + 0 × 2-14 + 1 × 2-15 + 1 × 2-16 + 0 × 2-17 + 0 × 2-18 + 1 × 2-19 + 1 × 2-20 + 0 × 2-21 + 0 × 2-22 + 1 × 2-23 + 1 × 2-24 + 0 × 2-25 + 0 × 2-26 + 1 × 2-27 + 1 × 2-28 + 0 × 2-29 + 0 × 2-30 + 1 × 2-31 + 1 × 2-32 + 0 × 2-33 + 0 × 2-34 + 1 × 2-35 + 1 × 2-36 + 0 × 2-37 + 0 × 2-38 + 1 × 2-39 + 1 × 2-40 + 0 × 2-41 + 0 × 2-42 + 1 × 2-43 + 1 × 2-44 + 0 × 2-45 + 1 × 2-46 + 1 × 2-47 + 0 × 2-48 + 0 × 2-49 + 1 × 2-50 + 0 × 2-51 + 0 × 2-52 =
0.5 + 0.25 + 0 + 0 + 0.031 25 + 0 + 0.007 812 5 + 0.003 906 25 + 0 + 0 + 0.000 488 281 25 + 0.000 244 140 625 + 0 + 0 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0 + 0 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0 + 0 + 0.000 000 119 209 289 550 781 25 + 0.000 000 059 604 644 775 390 625 + 0 + 0 + 0.000 000 007 450 580 596 923 828 125 + 0.000 000 003 725 290 298 461 914 062 5 + 0 + 0 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0 + 0 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0 + 0 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0 + 0 + 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0 + 0 =
0.5 + 0.25 + 0.031 25 + 0.007 812 5 + 0.003 906 25 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0.000 000 119 209 289 550 781 25 + 0.000 000 059 604 644 775 390 625 + 0.000 000 007 450 580 596 923 828 125 + 0.000 000 003 725 290 298 461 914 062 5 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 =
0.793 750 000 000 010 835 776 720 341 527 834 534 645 080 566 406 25(10)
5. Put all the numbers into expression to calculate the double precision floating point decimal value:
(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =
(-1)0 × (1 + 0.793 750 000 000 010 835 776 720 341 527 834 534 645 080 566 406 25) × 23 =
1.793 750 000 000 010 835 776 720 341 527 834 534 645 080 566 406 25 × 23 =
14.350 000 000 000 086 686 213 762 732 222 676 277 160 644 531 25
0 - 100 0000 0010 - 1100 1011 0011 0011 0011 0011 0011 0011 0011 0011 0011 0110 0100 converted from a 64 bit double precision IEEE 754 binary floating point standard representation number to a decimal system number, written in base ten (double) = 14.350 000 000 000 086 686 213 762 732 222 676 277 160 644 531 25(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.