Convert 0 - 100 0000 0001 - 0011 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0101, 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard, to Decimal
0 - 100 0000 0001 - 0011 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0101: 64 bit double precision IEEE 754 binary floating point representation standard converted to decimal
What are the steps to convert
0 - 100 0000 0001 - 0011 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0101, a 64 bit double precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 11 bits contain the exponent:
100 0000 0001
The last 52 bits contain the mantissa:
0011 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0101
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
100 0000 0001(2) =
1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 1 × 20 =
1,024 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 =
1,024 + 1 =
1,025(10)
3. Adjust the exponent.
Subtract the excess bits: 2(11 - 1) - 1 = 1023,
that is due to the 11 bit excess/bias notation.
The exponent, adjusted = 1,025 - 1023 = 2
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
0011 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0101(2) =
0 × 2-1 + 0 × 2-2 + 1 × 2-3 + 1 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 0 × 2-26 + 0 × 2-27 + 0 × 2-28 + 0 × 2-29 + 0 × 2-30 + 0 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 0 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 0 × 2-45 + 0 × 2-46 + 0 × 2-47 + 0 × 2-48 + 0 × 2-49 + 1 × 2-50 + 0 × 2-51 + 1 × 2-52 =
0 + 0 + 0.125 + 0.062 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0.125 + 0.062 5 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0.187 500 000 000 001 110 223 024 625 156 540 423 631 668 090 820 312 5(10)
5. Put all the numbers into expression to calculate the double precision floating point decimal value:
(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =
(-1)0 × (1 + 0.187 500 000 000 001 110 223 024 625 156 540 423 631 668 090 820 312 5) × 22 =
1.187 500 000 000 001 110 223 024 625 156 540 423 631 668 090 820 312 5 × 22 = ...
= 4.750 000 000 000 004 440 892 098 500 626 161 694 526 672 363 281 25
0 - 100 0000 0001 - 0011 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0101, a 64 bit double precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (double) = 4.750 000 000 000 004 440 892 098 500 626 161 694 526 672 363 281 25(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.