64 bit double precision IEEE 754 binary floating point number 0 - 100 0000 0001 - 0010 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0111 converted to decimal base ten (double)

How to convert 64 bit double precision IEEE 754 binary floating point:
0 - 100 0000 0001 - 0010 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0111
to decimal system (base ten)

1. Identify the elements that make up the binary representation of the number:

First bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.


The next 11 bits contain the exponent:
100 0000 0001


The last 52 bits contain the mantissa:
0010 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0111

2. Convert the exponent from binary (base 2) to decimal (base 10):

The exponent is allways a positive integer.

100 0000 0001(2) =


1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 1 × 20 =


1,024 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 =


1,024 + 1 =


1,025(10)

3. Adjust the exponent.

Subtract the excess bits: 2(11 - 1) - 1 = 1023, that is due to the 11 bit excess/bias notation:

Exponent adjusted = 1,025 - 1023 = 2


4. Convert the mantissa from binary (base 2) to decimal (base 10):

Mantissa represents the number's fractional part (the excess beyond the number's integer part, comma delimited)

0010 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0111(2) =

0 × 2-1 + 0 × 2-2 + 1 × 2-3 + 0 × 2-4 + 0 × 2-5 + 1 × 2-6 + 1 × 2-7 + 0 × 2-8 + 0 × 2-9 + 1 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 1 × 2-14 + 1 × 2-15 + 0 × 2-16 + 0 × 2-17 + 1 × 2-18 + 1 × 2-19 + 0 × 2-20 + 0 × 2-21 + 1 × 2-22 + 1 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 1 × 2-27 + 0 × 2-28 + 0 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 1 × 2-34 + 1 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 1 × 2-39 + 0 × 2-40 + 0 × 2-41 + 1 × 2-42 + 1 × 2-43 + 0 × 2-44 + 0 × 2-45 + 1 × 2-46 + 1 × 2-47 + 0 × 2-48 + 0 × 2-49 + 1 × 2-50 + 1 × 2-51 + 1 × 2-52 =


0 + 0 + 0.125 + 0 + 0 + 0.015 625 + 0.007 812 5 + 0 + 0 + 0.000 976 562 5 + 0.000 488 281 25 + 0 + 0 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0 + 0 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0 + 0 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 007 450 580 596 923 828 125 + 0 + 0 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0 + 0 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0 + 0 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =


0.125 + 0.015 625 + 0.007 812 5 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 007 450 580 596 923 828 125 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =


0.150 000 000 000 000 133 226 762 955 018 784 850 835 800 170 898 437 5(10)

5. Put all the numbers into expression to calculate the double precision floating point decimal value:

(-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =


(-1)0 × (1 + 0.150 000 000 000 000 133 226 762 955 018 784 850 835 800 170 898 437 5) × 22 =


1.150 000 000 000 000 133 226 762 955 018 784 850 835 800 170 898 437 5 × 22 =


4.600 000 000 000 000 532 907 051 820 075 139 403 343 200 683 593 75

Conclusion:

0 - 100 0000 0001 - 0010 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0111
converted from
64 bit double precision IEEE 754 binary floating point
to
base ten decimal system (double) =

4.600 000 000 000 000 532 907 051 820 075 139 403 343 200 683 593 75(10)

More operations of this kind:

0 - 100 0000 0001 - 0010 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 = ?

0 - 100 0000 0001 - 0010 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 1000 = ?


Convert 64 bit double precision IEEE 754 floating point standard binary numbers to base ten decimal system (double)

64 bit double precision IEEE 754 binary floating point standard representation of numbers requires three building blocks: sign (it takes 1 bit and it's either 0 for positive or 1 for negative numbers), exponent (11 bits), mantissa (52 bits)

Latest 64 bit double precision IEEE 754 floating point binary standard numbers converted to decimal base ten (double)

0 - 100 0000 0001 - 0010 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0111 = 4.600 000 000 000 000 532 907 051 820 075 139 403 343 200 683 593 75 Dec 02 21:05 UTC (GMT)
0 - 011 0010 1001 - 1111 1110 0000 0101 0101 0100 0000 0000 0000 0000 0000 0000 0000 = 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 075 670 893 460 589 276 177 844 719 945 250 038 809 695 534 229 797 501 896 164 644 473 596 127 343 900 479 083 729 292 667 778 570 812 453 227 748 156 223 879 491 723 830 663 721 384 048 869 822 436 245 158 314 704 895 019 531 25 Dec 02 21:05 UTC (GMT)
0 - 011 1111 1110 - 0011 1111 1110 0101 0110 0000 0100 0001 1000 1001 0011 0111 0110 = 0.624 796 875 000 000 140 332 190 312 619 786 709 547 042 846 679 687 5 Dec 02 21:04 UTC (GMT)
0 - 100 0011 0001 - 0001 1000 1011 0101 0100 1111 0010 0110 1110 1011 1100 0001 1100 = 1 234 567 891 234 567 Dec 02 21:01 UTC (GMT)
1 - 011 1111 1111 - 1000 1111 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010 = -1.558 593 750 000 000 444 089 209 850 062 616 169 452 667 236 328 125 Dec 02 21:01 UTC (GMT)
1 - 100 0000 0000 - 0110 1001 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 = -2.828 124 999 999 999 555 910 790 149 937 383 830 547 332 763 671 875 Dec 02 21:01 UTC (GMT)
0 - 101 0101 0101 - 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 8 958 978 968 711 216 842 229 769 122 273 777 112 486 581 988 938 598 139 599 956 403 855 167 484 720 643 781 523 509 973 086 428 463 104 Dec 02 21:00 UTC (GMT)
1 - 100 0000 0011 - 1011 1001 0000 1111 1111 1111 1111 1111 1111 1111 1111 1111 1100 = -27.566 406 249 999 985 789 145 284 797 996 282 577 514 648 437 5 Dec 02 20:59 UTC (GMT)
0 - 100 0001 0100 - 1001 0000 0001 1101 1011 0010 1111 0111 1000 1100 0010 0100 0000 = 3 277 750.370 872 765 779 495 239 257 812 5 Dec 02 20:59 UTC (GMT)
0 - 100 0110 0000 - 1001 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 = 248 825 947 896 361 470 439 096 057 856 Dec 02 20:58 UTC (GMT)
0 - 011 1111 1110 - 0011 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = 0.593 75 Dec 02 20:57 UTC (GMT)
1 - 100 0011 0000 - 0000 0011 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 = -570 096 779 001 856 Dec 02 20:57 UTC (GMT)
0 - 100 0000 1010 - 0000 0011 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 = 2 079.999 999 999 999 545 252 649 113 535 881 042 480 468 75 Dec 02 20:57 UTC (GMT)
All base ten decimal numbers converted to 64 bit double precision IEEE 754 binary floating point

How to convert numbers from 64 bit double precision IEEE 754 binary floating point standard to decimal system in base 10

Follow the steps below to convert a number from 64 bit double precision IEEE 754 binary floating point representation to base 10 decimal system:

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent.
    The last 52 bits contain the mantissa.
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10).
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation.
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10).
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted)

Example: convert the number 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 from 64 bit double precision IEEE 754 binary floating point system to base ten decimal (double):

  • 1. Identify the elements that make up the binary representation of the number:
    First bit (leftmost) indicates the sign, 1 = negative, 0 = pozitive.
    The next 11 bits contain the exponent: 100 0011 1101
    The last 52 bits contain the mantissa:
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000
  • 2. Convert the exponent, that is allways a positive integer, from binary (base 2) to decimal (base 10):
    100 0011 1101(2) =
    1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
    1,024 + 0 + 0 + 0 + 0 + 32 + 16 + 8 + 4 + 0 + 1 =
    1,024 + 32 + 16 + 8 + 4 + 1 =
    1,085(10)
  • 3. Adjust the exponent, subtract the excess bits, 2(11 - 1) - 1 = 1,023, that is due to the 11 bit excess/bias notation:
    Exponent adjusted = 1,085 - 1,023 = 62
  • 4. Convert the mantissa, that represents the number's fractional part (the excess beyond the number's integer part, comma delimited), from binary (base 2) to decimal (base 10):
    1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000(2) =
    1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 0 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
    0.5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 488 281 25 + 0 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
    0.5 + 0.000 488 281 25 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
    0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5(10)
  • 5. Put all the numbers into expression to calculate the double precision floating point decimal value:
    (-1)Sign × (1 + Mantissa) × 2(Exponent adjusted) =
    (-1)1 × (1 + 0.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5) × 262 =
    -1.500 507 372 900 793 612 302 550 172 898 918 390 274 047 851 562 5 × 262 =
    -6 919 868 872 153 800 704(10)
  • 1 - 100 0011 1101 - 1000 0000 0010 0001 0100 0000 0100 1110 0000 0100 0000 1010 1000 converted from 64 bit double precision IEEE 754 binary floating point representation to a decimal number (float) in decimal system (in base 10) = -6 919 868 872 153 800 704(10)