64 Bit IEEE 754 Binary to Double: Convert 0 - 011 1111 1111 - 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0110 0101, Number Written in 64 Bit Double Precision IEEE 754 Binary Floating Point Standard Representation, to a Base Ten Decimal System Double
0 - 011 1111 1111 - 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0110 0101: 64 bit double precision IEEE 754 binary floating point standard representation number converted to a base ten decimal system double
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 11 bits contain the exponent:
011 1111 1111
The last 52 bits contain the mantissa:
0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0110 0101
1. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
011 1111 1111(2) =
0 × 210 + 1 × 29 + 1 × 28 + 1 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 1 × 20 =
0 + 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 =
512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 =
1,023(10)
2. Adjust the exponent.
Subtract the excess bits: 2(11 - 1) - 1 = 1023,
that is due to the 11 bit excess/bias notation.
The exponent, adjusted = 1,023 - 1023 = 0
2. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0110 0101(2) =
0 × 2-1 + 1 × 2-2 + 0 × 2-3 + 1 × 2-4 + 0 × 2-5 + 1 × 2-6 + 0 × 2-7 + 1 × 2-8 + 0 × 2-9 + 1 × 2-10 + 0 × 2-11 + 1 × 2-12 + 0 × 2-13 + 1 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 1 × 2-20 + 0 × 2-21 + 1 × 2-22 + 0 × 2-23 + 1 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 1 × 2-28 + 0 × 2-29 + 1 × 2-30 + 0 × 2-31 + 1 × 2-32 + 0 × 2-33 + 1 × 2-34 + 0 × 2-35 + 1 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 1 × 2-40 + 0 × 2-41 + 1 × 2-42 + 0 × 2-43 + 1 × 2-44 + 0 × 2-45 + 1 × 2-46 + 1 × 2-47 + 0 × 2-48 + 0 × 2-49 + 1 × 2-50 + 0 × 2-51 + 1 × 2-52 =
0 + 0.25 + 0 + 0.062 5 + 0 + 0.015 625 + 0 + 0.003 906 25 + 0 + 0.000 976 562 5 + 0 + 0.000 244 140 625 + 0 + 0.000 061 035 156 25 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0.000 000 953 674 316 406 25 + 0 + 0.000 000 238 418 579 101 562 5 + 0 + 0.000 000 059 604 644 775 390 625 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0.000 000 003 725 290 298 461 914 062 5 + 0 + 0.000 000 000 931 322 574 615 478 515 625 + 0 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0.25 + 0.062 5 + 0.015 625 + 0.003 906 25 + 0.000 976 562 5 + 0.000 244 140 625 + 0.000 061 035 156 25 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 953 674 316 406 25 + 0.000 000 238 418 579 101 562 5 + 0.000 000 059 604 644 775 390 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 003 725 290 298 461 914 062 5 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0.333 333 333 333 336 812 032 143 825 490 493 327 379 226 684 570 312 5(10)
3. Put all the numbers into expression to calculate the double precision floating point decimal value:
(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =
(-1)0 × (1 + 0.333 333 333 333 336 812 032 143 825 490 493 327 379 226 684 570 312 5) × 20 =
1.333 333 333 333 336 812 032 143 825 490 493 327 379 226 684 570 312 5 × 20 = ...
= 1.333 333 333 333 336 812 032 143 825 490 493 327 379 226 684 570 312 5
0 - 011 1111 1111 - 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0110 0101 converted from a 64 bit double precision IEEE 754 binary floating point standard representation number to a decimal system number, written in base ten (double) = 1.333 333 333 333 336 812 032 143 825 490 493 327 379 226 684 570 312 5(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.